Background: Ochratoxin A is a nephrotoxin which may occur in wines characterised by higher pH than the average. In the last decades the mechanisms responsible for ochratoxin A reduction by lactic acid bacteria have been investigated and identified as mainly cell walls adsorption and / or enzymatic conversion to ochratoxin-α, a non-toxic metabolite. Since lactic acid bacteria are involved in the malolactic fermentation during the wine-making process, selected starter cultures could be exploited to guarantee safe ochratoxin A level in wines also from contaminated grapes. A lactic acid bacteria strain (Lactobacillus plantarum V22) was previously selected for its ability of both degrading ochratoxin A and carrying out malolactic fermentation at high pH. Objective: This study was aimed at assessing if the selected L. plantarum strain, can reduce ochratoxin A because it can use it as a carbon source. Methods: L. plantarum V22 was grown in the presence of ochratoxin A in two different synthetic substrates, with or without malic acid, monitoring the reduction of ochratoxin A and the presence of ochratoxin α as an indicator for a toxin enzymatic hydrolysis. The presence of residual not hydrolysed ochratoxin A bound to the bacteria cell walls was also evaluated to quantify the ochratoxin A removal due to simple adsorption. Result: A significant reduction of 19.5 ± 2.0% in ochratoxin A concentration was observed only in the presence of malic acid. The quantified fraction of ochratoxin A adsorbed on cell walls was irrelevant and the metabolite ochratoxin α could not be detected. Conclusion: There is a possibility that L. plantarum V22 can degrade ochratoxin A through a not yet identified metabolic pathway.

Moncalvo, A., Dordoni, R., Silva, A., Fumi, M. D., Di Piazza, S., Spigno, G., Ochratoxin a removal by Lactobacillus plantarum V22 in synthetic substrates, <<THE OPEN BIOTECHNOLOGY JOURNAL>>, 2018; 12 (1): 282-287. [doi:10.2174/1874070701811140282] [http://hdl.handle.net/10807/133501]

Ochratoxin a removal by Lactobacillus plantarum V22 in synthetic substrates

Moncalvo, Alessandro;Dordoni, Roberta;Silva, Angela;Fumi, Maria Daria;Spigno, Giorgia
2018

Abstract

Background: Ochratoxin A is a nephrotoxin which may occur in wines characterised by higher pH than the average. In the last decades the mechanisms responsible for ochratoxin A reduction by lactic acid bacteria have been investigated and identified as mainly cell walls adsorption and / or enzymatic conversion to ochratoxin-α, a non-toxic metabolite. Since lactic acid bacteria are involved in the malolactic fermentation during the wine-making process, selected starter cultures could be exploited to guarantee safe ochratoxin A level in wines also from contaminated grapes. A lactic acid bacteria strain (Lactobacillus plantarum V22) was previously selected for its ability of both degrading ochratoxin A and carrying out malolactic fermentation at high pH. Objective: This study was aimed at assessing if the selected L. plantarum strain, can reduce ochratoxin A because it can use it as a carbon source. Methods: L. plantarum V22 was grown in the presence of ochratoxin A in two different synthetic substrates, with or without malic acid, monitoring the reduction of ochratoxin A and the presence of ochratoxin α as an indicator for a toxin enzymatic hydrolysis. The presence of residual not hydrolysed ochratoxin A bound to the bacteria cell walls was also evaluated to quantify the ochratoxin A removal due to simple adsorption. Result: A significant reduction of 19.5 ± 2.0% in ochratoxin A concentration was observed only in the presence of malic acid. The quantified fraction of ochratoxin A adsorbed on cell walls was irrelevant and the metabolite ochratoxin α could not be detected. Conclusion: There is a possibility that L. plantarum V22 can degrade ochratoxin A through a not yet identified metabolic pathway.
2018
Inglese
Moncalvo, A., Dordoni, R., Silva, A., Fumi, M. D., Di Piazza, S., Spigno, G., Ochratoxin a removal by Lactobacillus plantarum V22 in synthetic substrates, <<THE OPEN BIOTECHNOLOGY JOURNAL>>, 2018; 12 (1): 282-287. [doi:10.2174/1874070701811140282] [http://hdl.handle.net/10807/133501]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/133501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact