Food production and consumption have been recognized as a major source of environmental impacts. To ensure food security and a sustainable food system, dietary changes have been identified as one of the valuable strategies to reduce impacts on the environment while promoting human health. The vast majority of scientific literature has been focused on the effects of food consumption on climate change while neglecting to assess the degree of water scarcity impacts due to water consumption embodied in food. The research paper investigates the nexus between food consumption and impacts on water consumption adding important findings to a more recent growing body of studies estimating the water footprint (WF) of different dietary scenarios. This study uses the Water Footprint Network methodology and the AWARE (Available Water REmaining) characterization model to assess both the WF and the blue WSF (water scarcity footprint), respectively, of four Danish diets: standard, carnivore, vegetarian and vegan. In order to make them comparable, a total intake of 2000 kcal person−1 day−1 was set as energetic reference for all the diet scenarios considered. Using detailed trade and production data of agri-foods, we were able to assess the location of primary production and consequently to reveal countries mainly affected by water scarcity associated with import to satisfy Danish diets consumption. We found that while the vegan scenario scored the best environmental profile requiring 1489 L/cap/day calculated with the volumetric WF approach, it has the largest potential impacts on blue WSF of 10,477 LH20-eq/cap/day. This study has shown that more than 90% of impacts on water consumption occur outside the national borders, as a consequence of large quantities of fruits and nuts imported by countries already threatened by high water scarcity conditions such as USA and Mediterranean regions. This methodological approach may be used to compare environmental performances of recommended dietary guidelines and to assess impact scenarios of new trade policies, protecting local water scarcity levels.

Zucchinelli, M., Sporchia, F., Piva, M., Thomsen, M., Lamastra, L., Caro, D., Effects of different Danish food consumption patterns on Water ScarcityFootprint, <<JOURNAL OF ENVIRONMENTAL MANAGEMENT>>, 2021; 2021 (113713): N/A-N/A. [doi:10.1016/j.jenvman.2021.113713] [https://hdl.handle.net/10807/274640]

Effects of different Danish food consumption patterns on Water ScarcityFootprint

Zucchinelli, Maria;Piva, Mariacristina;Lamastra, Lucrezia;
2021

Abstract

Food production and consumption have been recognized as a major source of environmental impacts. To ensure food security and a sustainable food system, dietary changes have been identified as one of the valuable strategies to reduce impacts on the environment while promoting human health. The vast majority of scientific literature has been focused on the effects of food consumption on climate change while neglecting to assess the degree of water scarcity impacts due to water consumption embodied in food. The research paper investigates the nexus between food consumption and impacts on water consumption adding important findings to a more recent growing body of studies estimating the water footprint (WF) of different dietary scenarios. This study uses the Water Footprint Network methodology and the AWARE (Available Water REmaining) characterization model to assess both the WF and the blue WSF (water scarcity footprint), respectively, of four Danish diets: standard, carnivore, vegetarian and vegan. In order to make them comparable, a total intake of 2000 kcal person−1 day−1 was set as energetic reference for all the diet scenarios considered. Using detailed trade and production data of agri-foods, we were able to assess the location of primary production and consequently to reveal countries mainly affected by water scarcity associated with import to satisfy Danish diets consumption. We found that while the vegan scenario scored the best environmental profile requiring 1489 L/cap/day calculated with the volumetric WF approach, it has the largest potential impacts on blue WSF of 10,477 LH20-eq/cap/day. This study has shown that more than 90% of impacts on water consumption occur outside the national borders, as a consequence of large quantities of fruits and nuts imported by countries already threatened by high water scarcity conditions such as USA and Mediterranean regions. This methodological approach may be used to compare environmental performances of recommended dietary guidelines and to assess impact scenarios of new trade policies, protecting local water scarcity levels.
2021
Inglese
Zucchinelli, M., Sporchia, F., Piva, M., Thomsen, M., Lamastra, L., Caro, D., Effects of different Danish food consumption patterns on Water ScarcityFootprint, <<JOURNAL OF ENVIRONMENTAL MANAGEMENT>>, 2021; 2021 (113713): N/A-N/A. [doi:10.1016/j.jenvman.2021.113713] [https://hdl.handle.net/10807/274640]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/274640
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact