: Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
La Placa, L., Tsitsigiannis, D., Camardo Leggieri, M., Battilani, P., From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination, <<FOODS>>, 2023; 12 (2): 260-276. [doi:10.3390/foods12020260] [https://hdl.handle.net/10807/227808]
From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination
La Placa, LauraPrimo
;Camardo Leggieri, MarcoPenultimo
;Battilani, Paola
Ultimo
2023
Abstract
: Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.