Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.

Olsen, R. K. J., Koňaříková, E., Giancaspero, T. A., Mosegaard, S., Boczonadi, V., Mataković, L., Veauville Merllié, A., Terrile, C., Schwarzmayr, T., Haack, T. B., Auranen, M., Leone, P., Galluccio, M., Imbard, A., Gutierrez Rios, P., Palmfeldt, J., Graf, E., Vianey Saban, C., Oppenheim, M., Schiff, M., Pichard, S., Rigal, O., Pyle, A., Chinnery, P. F., Konstantopoulou, V., Möslinger, D., Feichtinger, R. G., Talim, B., Topaloglu, H., Coskun, T., Gucer, S., Botta, A., Pegoraro, E., Malena, A., Vergani, L., Mazza', D., Zollino, M., Ghezzi, D. M., Acquaviva, C., Tyni, T., Boneh, A., Meitinger, T., Strom, T. M., Gregersen, N., Mayr, J. A., Horvath, R., Barile, M., Prokisch, H., Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency, <<AMERICAN JOURNAL OF HUMAN GENETICS>>, 2016; 98 (6): 1130-1145. [doi:10.1016/j.ajhg.2016.04.006] [http://hdl.handle.net/10807/95961]

Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency

Mazza', Daniela;Zollino, Marcella;
2016

Abstract

Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.
2016
Inglese
Olsen, R. K. J., Koňaříková, E., Giancaspero, T. A., Mosegaard, S., Boczonadi, V., Mataković, L., Veauville Merllié, A., Terrile, C., Schwarzmayr, T., Haack, T. B., Auranen, M., Leone, P., Galluccio, M., Imbard, A., Gutierrez Rios, P., Palmfeldt, J., Graf, E., Vianey Saban, C., Oppenheim, M., Schiff, M., Pichard, S., Rigal, O., Pyle, A., Chinnery, P. F., Konstantopoulou, V., Möslinger, D., Feichtinger, R. G., Talim, B., Topaloglu, H., Coskun, T., Gucer, S., Botta, A., Pegoraro, E., Malena, A., Vergani, L., Mazza', D., Zollino, M., Ghezzi, D. M., Acquaviva, C., Tyni, T., Boneh, A., Meitinger, T., Strom, T. M., Gregersen, N., Mayr, J. A., Horvath, R., Barile, M., Prokisch, H., Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency, <<AMERICAN JOURNAL OF HUMAN GENETICS>>, 2016; 98 (6): 1130-1145. [doi:10.1016/j.ajhg.2016.04.006] [http://hdl.handle.net/10807/95961]
File in questo prodotto:
File Dimensione Formato  
95961oa.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/95961
Citazioni
  • ???jsp.display-item.citation.pmc??? 44
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 99
social impact