In this note we construct the simplest unitary Riemann surface braid group representations geometrically by means of stable holomorphic vector bundles over complex tori and the prime form on Riemann surfaces. Generalised Laughlin wave functions are then introduced. The genus one case is discussed in some detail also with the help of noncommutative geometric tools, and an application of Fourier-Mukai-Nahm techniques is also given, explaining the emergence of an intriguing Riemann surface braid group duality.

Spera, M., On the geometry of some unitary Riemann surface braid group representations and Laughlin-type wave functions, <<JOURNAL OF GEOMETRY AND PHYSICS>>, 2015; 2015 (N/A): 120-140. [doi:10.1016/j.geomphys.2015.04.003] [http://hdl.handle.net/10807/66137]

On the geometry of some unitary Riemann surface braid group representations and Laughlin-type wave functions

Spera, Mauro
2015

Abstract

In this note we construct the simplest unitary Riemann surface braid group representations geometrically by means of stable holomorphic vector bundles over complex tori and the prime form on Riemann surfaces. Generalised Laughlin wave functions are then introduced. The genus one case is discussed in some detail also with the help of noncommutative geometric tools, and an application of Fourier-Mukai-Nahm techniques is also given, explaining the emergence of an intriguing Riemann surface braid group duality.
2015
Inglese
Spera, M., On the geometry of some unitary Riemann surface braid group representations and Laughlin-type wave functions, <<JOURNAL OF GEOMETRY AND PHYSICS>>, 2015; 2015 (N/A): 120-140. [doi:10.1016/j.geomphys.2015.04.003] [http://hdl.handle.net/10807/66137]
File in questo prodotto:
File Dimensione Formato  
Spera-JGP-VQR.pdf

non disponibili

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 493.05 kB
Formato Unknown
493.05 kB Unknown   Visualizza/Apri
spera-jgp-submitted.pdf

accesso aperto

Tipologia file ?: Preprint (versione pre-referaggio)
Licenza: Creative commons
Dimensione 293.93 kB
Formato Adobe PDF
293.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/66137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact