In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high energy scale physics associated with Mott-like excitations (|E-EF|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Y-Bi2212 over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc).

Giannetti, C., Cilento, F., Dal Conte, S., Coslovich, G., Ferrini, G., Molegraaf, H., Raichle, M., Liang, R., Eisaki, H., Greven, M., Damascelli, A., Van Der Marel, D., Parmigiani, F., Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates, <<NATURE COMMUNICATIONS>>, 2011; 2011 (2): N/A-N/A. [doi:10.1038/ncomms1354] [http://hdl.handle.net/10807/6567]

Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates

Giannetti, Claudio;Cilento, Federico;Dal Conte, Stefano;Coslovich, Giacomo;Ferrini, Gabriele;Parmigiani, Fulvio
2011

Abstract

In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high energy scale physics associated with Mott-like excitations (|E-EF|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Y-Bi2212 over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc).
Inglese
http://www.nature.com/ncomms/journal/v2/n6/full/ncomms1354.html
Giannetti, C., Cilento, F., Dal Conte, S., Coslovich, G., Ferrini, G., Molegraaf, H., Raichle, M., Liang, R., Eisaki, H., Greven, M., Damascelli, A., Van Der Marel, D., Parmigiani, F., Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates, <>, 2011; 2011 (2): N/A-N/A. [doi:10.1038/ncomms1354] [http://hdl.handle.net/10807/6567]
File in questo prodotto:
File Dimensione Formato  
Giannetti ncomms2011.pdf

accesso aperto

Descrizione: OPEN ACCESS version
Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 938.81 kB
Formato Adobe PDF
938.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/6567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact