Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau-negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance, and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here have been submitted to a database based on the Leiden Open (source) Variation Database (LOVD) and is accessible online at www.lovd.nl/TARDBP, www.lovd.nl/FUS.

Lattante, S., Rouleau, G., Kabashi, E., TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update, <<HUMAN MUTATION>>, 2013; 34 (6): 812-826. [doi:10.1002/humu.22319] [http://hdl.handle.net/10807/65580]

TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update

Lattante, Serena;
2013

Abstract

Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau-negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance, and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here have been submitted to a database based on the Leiden Open (source) Variation Database (LOVD) and is accessible online at www.lovd.nl/TARDBP, www.lovd.nl/FUS.
2013
Inglese
Lattante, S., Rouleau, G., Kabashi, E., TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update, <<HUMAN MUTATION>>, 2013; 34 (6): 812-826. [doi:10.1002/humu.22319] [http://hdl.handle.net/10807/65580]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/65580
Citazioni
  • ???jsp.display-item.citation.pmc??? 95
  • Scopus 210
  • ???jsp.display-item.citation.isi??? 202
social impact