In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline 18F-FDG PET/CT (bPET/CT) of classical Hodgkin’s Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (Dmax); Lesion_B, with highest SUVmax. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model “R”; - conventional PET/CT model “P”; - clinical model “C”. 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model “R” (Lesion_B F_cm.corr, C-index 66.9%). Best “C” model combined stage and IPS (C-index 74.8%), while optimal “P” model combined TMTV and Dmax (C-index 63.3%). After internal validation, “C”, “C + R”, “R + P” and “C + R + P” significantly predicted PFS. The best validated model was “C + R” (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline 18F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.
Triumbari, E. K. A., Morland, D., Gatta, R., Boldrini, L., De Summa, M., Chiesa, S., Cuccaro, A., Maiolo, E., Hohaus, S., Annunziata, S., The predictive power of 18F-FDG PET/CT two-lesions radiomics and conventional models in classical Hodgkin’s Lymphoma: a comparative retrospectively-validated study, <<ANNALS OF HEMATOLOGY>>, 2025; 104 (1): 641-651. [doi:10.1007/s00277-025-06190-8] [https://hdl.handle.net/10807/325587]
The predictive power of 18F-FDG PET/CT two-lesions radiomics and conventional models in classical Hodgkin’s Lymphoma: a comparative retrospectively-validated study
Boldrini, Luca;Chiesa, Silvia;Cuccaro, Annarosa;Maiolo, Elena;Hohaus, Stefan;Annunziata, Salvatore
2025
Abstract
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline 18F-FDG PET/CT (bPET/CT) of classical Hodgkin’s Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (Dmax); Lesion_B, with highest SUVmax. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model “R”; - conventional PET/CT model “P”; - clinical model “C”. 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model “R” (Lesion_B F_cm.corr, C-index 66.9%). Best “C” model combined stage and IPS (C-index 74.8%), while optimal “P” model combined TMTV and Dmax (C-index 63.3%). After internal validation, “C”, “C + R”, “R + P” and “C + R + P” significantly predicted PFS. The best validated model was “C + R” (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline 18F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



