In this study, a framework to compare the performances of different agrivoltaic systems, or agriphotovoltaic systems, in a range of environments was developed and tested. A set of key performance indicators derived from simulations was combined in a multi criteria decision analysis approach. The agriphotovoltaic systems were then ranked based on their similarity to the optimal solution for a specific environment. Main key performance indicators were crop ratio, energy conversion per hectare, specific energy yield, water use efficiency, and initial capital expenditure. Four agriphotovoltaics, namely vertical, interspace mono -axial, overhead mono -axial, and an overhead bi-axial, with five pitch width for each agriphotovoltaic and cultivated with processing tomato, were modelled across five sites (from the North to the South of Italy) during a ten-year period. The different scenarios were simulated in Scilab, in which a radiation model and GECROS crop model were coded. Global irradiation distribution beneath modules, and thus crop yield, were more homogeneous in vertical and overhead mono -axial than in the other agriphotovoltaic. Processing tomato demonstrated high adaptability to shading and yield was marginally affected in most of the agriphotovoltaic system alternatives. Vertical and overhead mono -axial accounted for the least yield reduction when the same pitch is compared. Overall, overhead mono -axial APV with 6 m pitch ranked first in each site when a 0.7 crop ratio threshold was considered. This framework could serve as a valuable tool for assessing the performance of different solution of agriphotovoltaics systems and their compliance with national regulation, and economic and technical targets.

Bellone, Y., Croci, M., Impollonia, G., Nik Zad, A., Colauzzi, M., Campana, P. E., Amaducci, S., Simulation-Based Decision Support for Agrivoltaic Systems, <<APPLIED ENERGY>>, 2024; 369 (1): 1-20. [doi:10.1016/j.apenergy.2024.123490] [https://hdl.handle.net/10807/297717]

Simulation-Based Decision Support for Agrivoltaic Systems

Bellone, Yuri;Croci, Michele;Impollonia, Giorgio;Colauzzi, Michele;Amaducci, Stefano
2024

Abstract

In this study, a framework to compare the performances of different agrivoltaic systems, or agriphotovoltaic systems, in a range of environments was developed and tested. A set of key performance indicators derived from simulations was combined in a multi criteria decision analysis approach. The agriphotovoltaic systems were then ranked based on their similarity to the optimal solution for a specific environment. Main key performance indicators were crop ratio, energy conversion per hectare, specific energy yield, water use efficiency, and initial capital expenditure. Four agriphotovoltaics, namely vertical, interspace mono -axial, overhead mono -axial, and an overhead bi-axial, with five pitch width for each agriphotovoltaic and cultivated with processing tomato, were modelled across five sites (from the North to the South of Italy) during a ten-year period. The different scenarios were simulated in Scilab, in which a radiation model and GECROS crop model were coded. Global irradiation distribution beneath modules, and thus crop yield, were more homogeneous in vertical and overhead mono -axial than in the other agriphotovoltaic. Processing tomato demonstrated high adaptability to shading and yield was marginally affected in most of the agriphotovoltaic system alternatives. Vertical and overhead mono -axial accounted for the least yield reduction when the same pitch is compared. Overall, overhead mono -axial APV with 6 m pitch ranked first in each site when a 0.7 crop ratio threshold was considered. This framework could serve as a valuable tool for assessing the performance of different solution of agriphotovoltaics systems and their compliance with national regulation, and economic and technical targets.
2024
Inglese
Bellone, Y., Croci, M., Impollonia, G., Nik Zad, A., Colauzzi, M., Campana, P. E., Amaducci, S., Simulation-Based Decision Support for Agrivoltaic Systems, <<APPLIED ENERGY>>, 2024; 369 (1): 1-20. [doi:10.1016/j.apenergy.2024.123490] [https://hdl.handle.net/10807/297717]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/297717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact