Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as the number of patients affected by this condition is constantly increasing due to a rising average lifespan. The absence of validated drugs effective in reducing hospitalization rates and mortality may reflect the impossibility of applying a one size fits all approach as in HFrEF, heading for a personalized approach. Available evidence demonstrated the link between collagen quantity and quality alterations, and cardiac remodeling. In the context of fibrosis, collagen cross-linking is strictly involved, displaying two types of mechanisms: enzymatic and non-enzymatic. In the murine model, enzymatic inhibition of fibrosis-inducing protease-activated receptor-1 (PAR1) and transforming growth factor (TGF)-& beta; signaling appeared to reduce cardiac fibrosis. On the other hand, in the case of non-enzymatic cross-linking, sodium glucose co-transporter type 2 inhibitors (SGLT2is), appeared to counteract the deposition of advanced glycation end-products (AGEs), which in turn contributed to ventricular remodeling. In this review, we address the mechanisms associated with collagen alterations to identify potential targets of cardiac fibrosis in HFpEF patients.

Bonanni, A., Vinci, R., D'Aiello, A., Grimaldi, M. C., Di Sario, M., Tarquini, D., Proto, L., Severino, A., Pedicino, D., Liuzzo, G., Targeting Collagen Pathways as an HFpEF Therapeutic Strategy, <<JOURNAL OF CLINICAL MEDICINE>>, 2023; 12 (18): N/A-N/A. [doi:10.3390/jcm12185862] [https://hdl.handle.net/10807/274414]

Targeting Collagen Pathways as an HFpEF Therapeutic Strategy

Bonanni, Alice;Vinci, Ramona;D'Aiello, Alessia;Grimaldi, Maria Chiara;Di Sario, Marianna;Tarquini, Dalila;Proto, Luca;Severino, Anna;Pedicino, Daniela;Liuzzo, Giovanna
2023

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as the number of patients affected by this condition is constantly increasing due to a rising average lifespan. The absence of validated drugs effective in reducing hospitalization rates and mortality may reflect the impossibility of applying a one size fits all approach as in HFrEF, heading for a personalized approach. Available evidence demonstrated the link between collagen quantity and quality alterations, and cardiac remodeling. In the context of fibrosis, collagen cross-linking is strictly involved, displaying two types of mechanisms: enzymatic and non-enzymatic. In the murine model, enzymatic inhibition of fibrosis-inducing protease-activated receptor-1 (PAR1) and transforming growth factor (TGF)-& beta; signaling appeared to reduce cardiac fibrosis. On the other hand, in the case of non-enzymatic cross-linking, sodium glucose co-transporter type 2 inhibitors (SGLT2is), appeared to counteract the deposition of advanced glycation end-products (AGEs), which in turn contributed to ventricular remodeling. In this review, we address the mechanisms associated with collagen alterations to identify potential targets of cardiac fibrosis in HFpEF patients.
2023
Inglese
Bonanni, A., Vinci, R., D'Aiello, A., Grimaldi, M. C., Di Sario, M., Tarquini, D., Proto, L., Severino, A., Pedicino, D., Liuzzo, G., Targeting Collagen Pathways as an HFpEF Therapeutic Strategy, <<JOURNAL OF CLINICAL MEDICINE>>, 2023; 12 (18): N/A-N/A. [doi:10.3390/jcm12185862] [https://hdl.handle.net/10807/274414]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/274414
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact