We are concerned with the following coupled nonlinear Schrödinger system: [equaction presented]. where ω, b > 0, p > 1. By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 and b > 0 large enough or if p ∈ (2, 3 ] and b > 0 small.

Jiang, Y., Chen, T., Zhang, J., Squassina, M., Almousa, N., Ground states of Schrödinger systems with the Chern-Simons gauge fields, <<ADVANCED NONLINEAR STUDIE>>, 2023; 23 (1): 1-16. [doi:10.1515/ans-2023-0086] [https://hdl.handle.net/10807/269614]

Ground states of Schrödinger systems with the Chern-Simons gauge fields

Squassina, Marco;
2023

Abstract

We are concerned with the following coupled nonlinear Schrödinger system: [equaction presented]. where ω, b > 0, p > 1. By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 and b > 0 large enough or if p ∈ (2, 3 ] and b > 0 small.
2023
Inglese
Jiang, Y., Chen, T., Zhang, J., Squassina, M., Almousa, N., Ground states of Schrödinger systems with the Chern-Simons gauge fields, <<ADVANCED NONLINEAR STUDIE>>, 2023; 23 (1): 1-16. [doi:10.1515/ans-2023-0086] [https://hdl.handle.net/10807/269614]
File in questo prodotto:
File Dimensione Formato  
10.1515_ans-2023-0086.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/269614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact