We are concerned with the following coupled nonlinear Schrödinger system: [equaction presented]. where ω, b > 0, p > 1. By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 and b > 0 large enough or if p ∈ (2, 3 ] and b > 0 small.
Jiang, Y., Chen, T., Zhang, J., Squassina, M., Almousa, N., Ground states of Schrödinger systems with the Chern-Simons gauge fields, <<ADVANCED NONLINEAR STUDIE>>, 2023; 23 (1): 1-16. [doi:10.1515/ans-2023-0086] [https://hdl.handle.net/10807/269614]
Ground states of Schrödinger systems with the Chern-Simons gauge fields
Squassina, Marco;
2023
Abstract
We are concerned with the following coupled nonlinear Schrödinger system: [equaction presented]. where ω, b > 0, p > 1. By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 and b > 0 large enough or if p ∈ (2, 3 ] and b > 0 small.File | Dimensione | Formato | |
---|---|---|---|
10.1515_ans-2023-0086.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.