In this paper we are interested in the following critical Hartree equation {-Δu=(∫Ωu2μ∗(ξ)|x-ξ|μdξ)u2μ∗-1+εu,inΩ,u=0,on∂Ω, where N≥ 4 , 0 < μ≤ 4 , ε> 0 is a small parameter, Ω is a bounded domain in RN , and 2μ∗=2N-μN-2 is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. By establishing various versions of local Pohozaev identities and applying blow-up analysis, we first investigate the location of the blow-up points for single bubbling solutions to above the Hartree equation. Next we prove the local uniqueness of the blow-up solutions that concentrates at the non-degenerate critical point of the Robin function for ε small.

Squassina, M., Yang, M., Zhao, S., Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain, <<CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS>>, 2023; 62 (217): 1-51. [doi:10.1007/s00526-023-02551-1] [https://hdl.handle.net/10807/269603]

Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain

Squassina, Marco;
2023

Abstract

In this paper we are interested in the following critical Hartree equation {-Δu=(∫Ωu2μ∗(ξ)|x-ξ|μdξ)u2μ∗-1+εu,inΩ,u=0,on∂Ω, where N≥ 4 , 0 < μ≤ 4 , ε> 0 is a small parameter, Ω is a bounded domain in RN , and 2μ∗=2N-μN-2 is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. By establishing various versions of local Pohozaev identities and applying blow-up analysis, we first investigate the location of the blow-up points for single bubbling solutions to above the Hartree equation. Next we prove the local uniqueness of the blow-up solutions that concentrates at the non-degenerate critical point of the Robin function for ε small.
2023
Inglese
Squassina, M., Yang, M., Zhao, S., Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain, <<CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS>>, 2023; 62 (217): 1-51. [doi:10.1007/s00526-023-02551-1] [https://hdl.handle.net/10807/269603]
File in questo prodotto:
File Dimensione Formato  
minbo2.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 739.35 kB
Formato Adobe PDF
739.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/269603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact