We prove the existence of a spherically symmetric solution for a Schr\"odinger equation with a nonlocal nonlinearity of Choquard type, i.e. $$ (- \Delta)^s u + \mu u = (I_\alpha*F(u))f(u) \quad \hbox{in $\mathbb{R}^N$}, $$ where $N\geq 2$, $s \in (0,1)$, $\alpha\in (0,N)$, $I_\alpha(x)=\frac{A_{N,\alpha}}{|x|^{N-\alpha}}$ is the Riesz potential, $\mu>0$ is part of the unknowns, and $F\in C^1(\mathbb{R},\mathbb{R})$, $F' = f$ is assumed to be subcritical and to satisfy almost optimal assumptions. The mass of of the solution, described by its norm in the $L^2$-space, is prescribed in advance by $\int_{\mathbb{R}^N} u^2 \, dx = c$ for some $c>0$. The approach to this constrained problem relies on a Lagrange formulation and new deformation arguments. In addition, we prove that the obtained solution is also a ground state, which means that it realizes minimal energy among all the possible solutions to the problem.
Cingolani, S., Gallo, M., Tanaka, K., Symmetric ground states for doubly nonlocal equations with mass constraint, <<SYMMETRY>>, 2021; 13 (7): 1-17. [doi:10.3390/sym13071199] [https://hdl.handle.net/10807/229087]
Symmetric ground states for doubly nonlocal equations with mass constraint
Gallo, Marco;
2021
Abstract
We prove the existence of a spherically symmetric solution for a Schr\"odinger equation with a nonlocal nonlinearity of Choquard type, i.e. $$ (- \Delta)^s u + \mu u = (I_\alpha*F(u))f(u) \quad \hbox{in $\mathbb{R}^N$}, $$ where $N\geq 2$, $s \in (0,1)$, $\alpha\in (0,N)$, $I_\alpha(x)=\frac{A_{N,\alpha}}{|x|^{N-\alpha}}$ is the Riesz potential, $\mu>0$ is part of the unknowns, and $F\in C^1(\mathbb{R},\mathbb{R})$, $F' = f$ is assumed to be subcritical and to satisfy almost optimal assumptions. The mass of of the solution, described by its norm in the $L^2$-space, is prescribed in advance by $\int_{\mathbb{R}^N} u^2 \, dx = c$ for some $c>0$. The approach to this constrained problem relies on a Lagrange formulation and new deformation arguments. In addition, we prove that the obtained solution is also a ground state, which means that it realizes minimal energy among all the possible solutions to the problem.File | Dimensione | Formato | |
---|---|---|---|
Cingolani-Gallo-Tanaka - Symmetry (2021) [arxiv].pdf
accesso aperto
Tipologia file ?:
Postprint (versione finale dell’autore successiva alla peer-review)
Licenza:
Creative commons
Dimensione
474.25 kB
Formato
Adobe PDF
|
474.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.