We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same "invertible modulus of continuity". This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant.We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A subset of X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.

De Bernardi, C. A., Vesely, L., ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS, <<PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2023; 151 (4): 1705-1716. [doi:10.1090/proc/16234] [https://hdl.handle.net/10807/228092]

ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS

De Bernardi, Carlo Alberto;
2023

Abstract

We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same "invertible modulus of continuity". This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant.We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A subset of X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.
2023
Inglese
De Bernardi, C. A., Vesely, L., ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS, <<PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY>>, 2023; 151 (4): 1705-1716. [doi:10.1090/proc/16234] [https://hdl.handle.net/10807/228092]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/228092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact