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Abstract. We show that each uniformly continuous quasiconvex function
defined on a subspace of a normed space X admits a uniformly continuous
quasiconvex extension to the whole X with the same “invertible modulus of
continuity”. This implies an analogous extension result for Lipschitz quasicon-
vex functions, preserving the Lipschitz constant.

We also show that each uniformly continuous quasiconvex function defined
on a uniformly convex set A ⊂ X admits a uniformly continuous quasiconvex
extension to the whole X. However, our extension need not preserve moduli of
continuity in this case, and a Lipschitz quasiconvex function on A may admit
no Lipschitz quasiconvex extension to X at all.

1. Introduction

A real-valued function f defined on a convex set A is said to be quasiconvex if all
its sub-level sets are convex (see Definition 2.3). Quasiconvex functions represent a
natural generalization of convex functions and play a crucial role in Optimization, in
Mathematical programming, in Mathematical economics, and in many other areas
of mathematical analysis (see [1, 2, 6, 9] and the references therein).

Let X be a normed space of dimension at least two. Here we are interested
in extending uniformly continuous quasiconvex functions either from a subspace
Y ⊂ X or from an open convex set A ⊂ X to the whole X. In both cases, we make
advantage of the relation between continuity properties of a quasiconvex function
and some particular strict-monotonicity properties of its sub-level sets, formulated
in Proposition 2.5. In this way, extension of functions can be reduced to extension
of convex sets, which is an easier task.

After a section of notations and preliminaries, the subsequent Section 3 deals
with extensions from a subspace Y . The main result, Theorem 3.4, says that each
uniformly continuous quasiconvex function f on Y admits a uniformly continuous
quasiconvex extension defined on the whole X. Since our method preserves moduli
of uniform continuity, this also implies that if f is even Lipschitz on Y then it

Received by the editors May 6, 2022, and, in revised form, August 18, 2022, and August 20,
2022.

2020 Mathematics Subject Classification. Primary 26B25, 52A05; Secondary 46A55, 52A99.
Key words and phrases. Quasiconvex function, extension, uniformly convex set, normed space.
The research of the first author was partially supported by the GNAMPA (INdAM – Isti-

tuto Nazionale di Alta Matematica) Research Project 2020 and by the Ministry for Science and
Innovation, Spanish State Research Agency (Spain), under project PID2020-112491GB-I00.

The research of the second author was partially supported by the GNAMPA (INdAM – Istituto
Nazionale di Alta Matematica) Research Project 2020 and by the University of Milan, Research
Support Plan PSR 2020.

c©2023 American Mathematical Society
1705

Licensed to University Cattolica Del S Cuore. Prepared on Tue Feb 11 09:03:14 EST 2025 for download from IP 185.11.153.228.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/16234


1706 C. A. DE BERNARDI AND L. VESELÝ

admits a quasiconvex extension on X which is Lipschitz with the same Lipschitz
constant.

Then we consider extendability from an open convex set A ⊂ X. We have
shown elsewhere (see [5]) that this is not always possible: if X is a Banach space
and A is not “locally uniformly convex” then there exists a Lipschitz quasiconvex
function on A admitting no continuous quasiconvex extension to X whatsoever. In
the present paper, we provide a positive result concerning “uniformly convex sets”.
Such sets were defined and studied by Balashov and Repovš [3]. In Section 4 we give
a similar, maybe more natural, definition and we prove that the two definitions are
equivalent. As a corollary we obtain that each proper, uniformly convex subset of X
is bounded. The main result in the subsequent Section 5, Theorem 5.5, states that
if A is uniformly convex then every uniformly continuous quasiconvex function on
A admits a uniformly continuous quasiconvex extension to the whole X. However,
the modulus of continuity need not be preserved in this case. We have shown in [5]
that there exists a Lipschitz quasiconvex function on a disc in the Euclidean plane
admitting no Lipschitz quasiconvex extension to any larger disc.

Finally, our results immediately imply the following corollary in the spirit of our
paper [4]: if A ⊂ X is an open convex set whose intersection with a subspace Y is
a nonempty, proper, uniformly convex subset of Y , then each uniformly continuous
quasiconvex function on A∩Y admits a uniformly quasiconvex extension to A (even
to the whole X).

2. Preliminaries

2.1. Notation. By a normed space we mean a real normed linear space of di-
mension at least two. If not specified otherwise, X denotes such a space. By
U(x; r) ≡ UX(x; r) and B(x; r) ≡ BX(x; r) we denote the open and the closed ball
centered in x ∈ X with radius r ≥ 0, respectively. In particular, U(x; 0) = ∅ and
B(x; 0) = {x}. Moreover we put U(x;∞) := X. We also denote UX := U(0; 1) and
BX := B(0; 1), the open and closed unit ball of X, respectively. The unit sphere of
the dual Banach space X∗ of X will be denoted by SX∗ .

The closed segment with endpoints x, y ∈ X is denoted by [x, y], and [x, y) :=
[x, y] \ {y}, (x, y) := [x, y] \ {x, y}.

If W ⊂ Z ⊂ X then intZ W , W
Z
and ∂ZW denote the relative interior, relative

closure and relative boundary, respectively, of W in Z. In the case of Z = X, we
simply write intW , W and ∂W .

The distance of two sets B,C ⊂ X is defined as

d(B,C) := inf{‖b− c‖ : b ∈ B, c ∈ C}

with the usual convention that inf ∅ := ∞. We also put d(x,B) := d({x}, B),
x ∈ X. By diam(B) we denote the diameter of B; by span(B), aff(B) and conv(B)
we mean the linear, affine and convex hull of B, respectively.

Let A be an open convex set in X. Then it is well known that

(1) x ∈ A, a ∈ A ⇒ [a, x) ⊂ A.

If C ⊂ X is a convex set with nonempty interior and x ∈ ∂C, we denote by
Σ(x,C) the (nonempty) set of elements of X∗ that support C at x, that is,

Σ(x,C) = {f ∈ X∗ \ {0} : sup f(C) = f(x)}.
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ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS 1707

Given a nonempty set E, a function f : E → R, and α ∈ R, we shall often use
the following simplified notation:

[f ≤ α] := {x ∈ E : f ≤ α} ;

the sets [f < α], [f = α], [f ≥ α] and [f > α] are defined in an obvious analogous
way. If E is a metric space and f is Lipschitz with a Lipschitz constant L > 0 on
E, we shall briefly say that f is L-Lipschitz.

2.2. Invertible modulus of continuity. The following lemma introduces a termi-
nology and a tool which will be useful for our purposes. Its proof is quite standard.

Lemma 2.1 (Invertible modulus of continuity). Let E be a (nonempty) convex set
in a normed space X, and f : E → R a function. Then f is uniformly continuous
on E if and only if there exists a function ω : [0,∞) → [0,∞) such that:

(a) ω is an increasing homeomorphism of [0,∞) onto itself;
(b) |f(x)− f(y)| ≤ ω(‖x− y‖) whenever x, y ∈ E.

Such function ω will be called an invertible modulus of continuity of f .

Sketch of proof. It is well-known that every uniformly continuous function f has a
modulus of continuity, that is, a function ω : [0,∞) → [0,∞) which is nondecreasing,

right-continuous at 0 with ω(0) = 0, and satisfies (b). Then ω̃(t) := (1/t)
∫ 2t

t
ω(s) ds

(t > 0) defines a continuous modulus of continuity, and t + ω̃(t) is an invertible
modulus of continuity. The other implication is obvious. �

The following well-known fact is very easy.

Fact 2.2. Let X be a normed space, E ⊂ X a bounded convex set, and f : E → R

a uniformly continuous function. Then f is bounded on E.

2.3. Quasiconvex functions and their sub-level sets. Main results of the
present paper are based on the following simple idea: we transform the problem of
extending quasiconvex functions into a problem of extending monotone families of
convex sets, which we find to be an easier task.

First, let us recall the definition of a quasiconvex function. Notice that each
convex function is quasiconvex, but not vice-versa.

Definition 2.3. Let E be a convex set in a vector space. A function f : E → R

is called quasiconvex if f((1− t)x+ ty) ≤ max{f(x), f(y)} whenever x, y ∈ E and
t ∈ [0, 1]. Thus f is quasiconvex if and only if all its strict sub-level sets [f < β]
(β ∈ R) are convex, if and only if all its sub-level sets [f ≤ β] (β ∈ R) are convex.

For brevity of formulations, we introduce the following definition from [4].

Definition 2.4. Given a nonempty set E ⊂ X, an Ω(E)-family is a family {Dα}α∈R

of sets in X such that⋂
α∈R

Dα = ∅,
⋃
α∈R

Dα = E, D
E

α ⊂ Dβ whenever α, β ∈ R, α < β.

The following simple, but important proposition, which is a variant of [4, Propo-
sition 2.4], provides a basic connection between regularity of a quasiconvex function
and certain monotonicity properties of the family of its sub-level sets.
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1708 C. A. DE BERNARDI AND L. VESELÝ

Proposition 2.5. Let E ⊂ X be a convex set.

(a) If {Dα}α∈R is an Ω(E)-family of relatively open convex subsets of E, then
the function

f(x) := sup{α ∈ R : x /∈ Dα} (x ∈ E)

is a continuous quasiconvex function on E such that for each α ∈ R

(2) [f < α] =
⋃
β<α

Dβ and [f ≤ α] =
⋂
γ>α

Dγ .

(b) If g is a continuous quasiconvex function on E, then the sets

Dα := [g < α] (α ∈ R)

form an Ω(E)-family of relatively open convex subsets of E. Moreover, the
function f associated to {Dα}α∈R by (a) coincides with g.

(c) Let {Dα}α∈R and f be as in (a). Let ω : [0,∞) → [0,∞) be an increasing
homeomorphism of [0,∞) onto itself. Then the following two assertions are
equivalent:
(c1) f is uniformly continuous with invertible modulus of continuity ω;
(c2) d(Dα, E \Dβ) ≥ ω−1(β − α) whenever α, β ∈ R, α < β.
In particular, f is Lipschitz with a Lipschitz constant L > 0 (L-Lipschitz,
for short) if and only if d(Dα, E \Dβ) ≥ (1/L)(β − α) whenever α < β.

Proof.

(a) It is clear that f is well-defined, and it is an elementary exercise to show
that it satisfies (2). Since all the sets [f < α] are convex and relatively open in
E, f is quasiconvex and upper semicontiuous on E. Moreover, the definition of an

Ω(E)-family implies that [f ≤ α] =
⋂

γ>α D
E

γ for each α ∈ R, and hence f is also
lower semicontinuous on E.

(b) The first part is clear. For the second part, if x ∈ E then we have f(x) =
sup{α ∈ R; g(x) ≥ α} = g(x).

(c) Let f be uniformly continuous with invertible modulus of continuity ω. Let
α < β be real numbers and x ∈ Dα, y ∈ E \Dβ . Then f(x) ≤ α and f(y) ≥ β, and
hence β − α ≤ f(y) − f(x) ≤ ω(‖y − x‖). It follows that ‖y − x‖ ≥ ω−1(β − α),
and (c2) follows. To show the other implication, assume (c2) and consider x, y ∈ E
such that f(x) < f(y). For any two reals α, β with f(x) < α < β < f(y), we have
x ∈ Dα and y /∈ Dβ , and hence ‖y − x‖ ≥ ω−1(β − α). By letting α → f(x)+ and
β → f(y)− we obtain ‖y−x‖ ≥ ω−1(f(y)− f(x)). This implies (c1). The last part
is now obvious since f is L-Lipschitz if and only if it is uniformly continuous with
invertible modulus of continuity ω(t) = Lt (t ≥ 0).

�

3. Extension from a subspace

3.1. Extension of convex sets from a subspace. We shall need the following
known fact which is an easy consequence of the identity

UX

(
(1− t)x1 + tx2; (1− t)r1 + tr2

)
= (1− t)UX(x1; r1) + tUX(x2; r2),

x1, x2 ∈ X, r1, r2 > 0, t ∈ (0, 1).

Fact 3.1. Let X be a normed space, and C ⊂ X an open convex set. Then the
distance function d(·, X \ C) is concave on C.
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ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS 1709

The following definition provides a method of extension of relatively open convex
sets in a subspace to open convex sets in the whole space, and the subsequent lemma
shows that this extension method preserves certain distances of sets.

Definition 3.2. Let Y be a subspace of a normed space X, and C ⊂ Y an open
convex set in Y . We define the “natural extension” of C as the set

Ĉ :=
⋃
y∈Y

UX

(
y; d(y, Y \ C)

)
.

Lemma 3.3. Let Y be a subspace of a normed space X, and let C,C1, C2 ⊂ Y be
open convex sets in Y .

(a) Ĉ is an open convex set in X, and Ĉ ∩ Y = C.

(b) If C1 ⊂ C2 then dist(Ĉ1, X \ Ĉ2) = dist(C1,Y \ C2).

Proof.

(a) It is clear that Ĉ is open, and Ĉ ∩ Y =
⋃

y∈C UY (y; d(y, Y \ C)) = C. It

remains to show that Ĉ is convex. Let x1, x2 ∈ Ĉ, t ∈ (0, 1) and x =
(1 − t)x1 + tx2. For each i ∈ {1, 2} there is yi ∈ C such that ‖xi − yi‖ <
d(yi, Y \C). Consider y := (1−t)y1+ty2 ∈ C. Then, by Fact 3.1, ‖x−y‖ ≤
(1−t)‖x1−y1‖+t‖x2−y2‖ < (1−t)d(y1, Y \C)+td(y2, Y \C) ≤ d(y, Y \C).

Thus x ∈ Ĉ, and (a) is proved.

(b) By (a), Ĉ1 ⊃ C1 and X \ Ĉ2 ⊃ Y \ C2, and this implies the inequality ≤
in (b). To show the inequality ≥, assume that δ := dist(C1,Y \ C2) > 0.
Then

Ĉ1 + δUX =
⋃

y∈C1

UX

(
y; d(y, Y \ C1) + δ

)
⊂

⋃
y∈C1

UX

(
y; d(y, Y \ C2)

)
⊂ Ĉ2,

and this means that dist(Ĉ1, X \ Ĉ2) ≥ δ. We are done.

�
3.2. Extension of quasiconvex functions from a subspace. Now we are ready
for the main result of the present section.

Theorem 3.4. Let Y be a subspace of a normed space X, and f : Y → R a qua-
siconvex function. If f is uniformly continuous with an invertible modulus of con-
tinuity, then it admits a quasiconvex extension F : X → R which is uniformly
continuous with the same invertible modulus of continuity.

In particular, every L-Lipschitz quasiconvex function on Y admits an L-Lipschitz
quasiconvex extension to the whole X.

Proof. Assume that f is uniformly continuous with an invertible modulus of con-
tinuity ω, and define Cα := [f < α] (α ∈ R). By Proposition 2.5, {Cα}α∈R is an
Ω(Y )-family of open convex sets in Y such that dist(Cα, Y \ Cβ) ≥ ω−1(β − α)

whenever α < β. By Lemma 3.3, the “naturally extended sets” Dα := Ĉα (α ∈ R)
also satisfy the inequality dist(Dα, X \Dβ) ≥ ω−1(β − α) whenever α < β. Notice
that this also gives that

⋃
α∈R

Dα = X. Now Proposition 2.5 easily implies that
the formula

F (x) := sup{α ∈ R : x /∈ Dα} (x ∈ X)

defines a quasiconvex extension of f to the whole X which is uniformly continuous
with modulus ω. Moreover, F is L-Lipschitz on X whenever f is L-Lipschitz on
Y . �
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1710 C. A. DE BERNARDI AND L. VESELÝ

4. Uniformly convex sets

Our second task is now to study extendibility of uniformly continuous quasicon-
vex functions from an open convex subset A of a normed space X to the whole
X. We show elsewhere (see [5]) that this is not always possible. However, we shall
show in the next section that uniformly continuous quasiconvex extensions do exist
provided A is uniformly convex. The present section is devoted to introducing uni-
form convexity of sets. Let us remark that uniformly convex sets have already been
defined by Polyak in [10] (see also [3]), though in a slightly different way (called

by us “δ̃-uniformly convex”) which turns out to be equivalent to our definition (see
Proposition 4.3).

We can define uniform convexity of the unit ball to be equivalent to uniform
convexity of the space in question, which is a well-known notion from the Banach
space theory (see e.g. [7]). The notion of a uniformly convex set represents a direct,
natural generalization.

Definition 4.1. Let C be a convex set in X. We shall say that

• C is nontrivial if ∅ �= C �= X (equivalently, if ∂C �= ∅);
• C is strictly convex if it satisfies the implication:

x, y ∈ ∂C, x �= y ⇒ x+ y

2
∈ intC ;

• C is uniformly convex if for each ε ∈ (0, diam(C)) there exists δ > 0 such
that

x, y ∈ ∂C, ‖x− y‖ ≥ ε ⇒ d(
x+ y

2
, ∂C) ≥ δ .

• C is δ̃-uniformly convex if for each ε ∈ (0, diam(C)) there exists δ > 0 such
that

x, y ∈ C, ‖x− y‖ ≥ ε ⇒ d(
x+ y

2
, ∂C) ≥ δ .

• Moreover, for 0 ≤ ε < diam(C) we define the following two moduli of
convexity :

δC(ε) := inf
{
d(

x+ y

2
, ∂C) : x, y ∈ ∂C, ‖x− y‖ ≥ ε

}
,

δ̃C(ε) := inf
{
d(

x+ y

2
, ∂C) : x, y ∈ C, ‖x− y‖ ≥ ε

}
.

Let us collect some immediate properties.

Observation 4.2. Let C ⊂ X be a nontrivial convex set.

(a) The following assertions are equivalent:
(a1) C is uniformly convex;
(a2) ‖xn − yn‖ → 0 whenever {xn}, {yn} ⊂ ∂C, d(xn+yn

2 , ∂C) → 0;
(a3) δC(ε) > 0 for every ε ∈ (0, diam(C)).

(b) Likewise, the following assertions are equivalent:

(b1) C is δ̃-uniformly convex;
(b2) ‖xn − yn‖ → 0 whenever {xn}, {yn} ⊂ C, d(xn+yn

2 , ∂C) → 0;

(b3) δ̃C(ε) > 0 for every ε ∈ (0, diam(C)).
(c) Moreover, for each 0 ≤ ε < diam(C) one has

δC(ε) ≥ δ̃C(ε) = inf

{
d(

x+ y

2
, ∂C) : x, y ∈ C, ‖x− y‖ = ε

}
.
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ON EXTENSION OF UNIFORMLY CONTINUOUS QUASICONVEX FUNCTIONS 1711

Proof. To see the equality in (c), it suffices to observe that if x, y ∈ C are such that

‖x− y‖ ≥ ε, there exist x′, y′ ∈ [x, y] such that ‖x′− y′‖ = ε and x′+y′

2 = x+y
2 . The

rest is very easy. �

In our opinion, the above notion of uniform convexity (and the modulus δC) is

more natural that the notion of δ̃-uniform convexity (and the modulus δ̃C), but it
turns out to be less comfortable to work with. It is natural to ask whether the
two notions are really different. As we shall see in Proposition 4.3, the two notions
reveal to be equivalent.

Moreover, Observation 4.2(c) implies that the modulus of convexity δ̃C coincides
with the modulus used by Balashov and Repovš in [3] to define “uniformly convex
sets”. This enables us to take advantage of some of their results.

So it is time to prove the promised equivalence, which is the main result of the
present section.

Proposition 4.3. Let C be a nontrivial convex set in a normed space X. Then C

is uniformly convex if and only if C is δ̃-uniformly convex.

Proof. One implication is clear by the inequality in Observation 4.2(c). To show
the opposite implication, let us proceed by contradiction. Assume that δC(·) > 0

on (0, diam(C)) and there exists ε0 ∈ (0, diam(C)) such that δ̃C(ε0) = 0. Denote
δ0 := δC(

ε0
4 ) (> 0). Let θ > 0 be such that:

(I) ε0
2 − 2θ ≥ ε0

4 ;

(II) 2
3 (δ0 − θ) ≥ θ.

Since δ̃C(ε0) = 0, there exist x, y ∈ C such that ‖x − y‖ ≥ ε0 and, for z = x+y
2 ,

there exists z′ ∈ ∂C satisfying ‖z − z′‖ < θ. Without any loss of generality, we
can suppose that d(x, ∂C) < θ (indeed, if d(x, ∂C) ≥ θ and d(y, ∂C) ≥ θ then also
d(z, ∂C) ≥ θ). Let x′ ∈ ∂C be such that ‖x− x′‖ < θ and observe that

‖x′ − z′‖ ≥ ‖x− z‖ − ‖x− x′‖ − ‖z − z′‖ ≥ ε0
2

− 2θ ≥ ε0
4
,

where the last inequality holds by (I). Then, by definition of δC and since x′, z′ ∈
∂C, we have that d(x

′+z′

2 , ∂C) ≥ δ0. Moreover, ‖x′+z′

2 − x+z
2 ‖ < θ. By (II), we

have that δ0 − θ > 0 and that d
(
x+z
2 , ∂C

)
≥ δ0 − θ > 0. Since z = 2

3
x+z
2 + 1

3y, we
have

z +
2

3
(δ0 − θ)BX ⊂ z +

2

3
d
(x+ z

2
, ∂C

)
BX ⊂ C.

By applying (II) again, we have that z + θBX ⊂ C, which is a contradiction since
‖z − z′‖ < θ. �

Now, a result in [3] about δ̃-uniformly convex sets in Banach spaces will provide
us with the following corollary.

Corollary 4.4. Each nontrivial uniformly convex set in a normed space is bounded,
strictly convex, and has nonempty interior.

Proof. Strict convexity and nonempty interior are obvious from the the definition.
To show boundedness, we claim that we can assume that the normed space in
question is a Banach space.

Indeed, let X and X1 be the given normed space and its completion, respectively,
and C ⊂ X a nontrivial uniformly convex set. We can (and do) assume that C is
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1712 C. A. DE BERNARDI AND L. VESELÝ

closed in X. Let C1 be the closure of C in X1. Then intX C is dense in intX1
C1,

as well as ∂XC is dense in ∂X1
C1. And this implies that C1 is uniformly convex in

X1.
Boundedness now follows by [3, Theorem 2.1] which implies that each (nontrivial)

δ̃-uniformly convex set in a Banach space is bounded. �

5. Extension from uniformly convex sets

Convention. Unless specified otherwise, throughout the present section A denotes
a nontrivial open convex set in a normed space X.

Let us remark that we restrict ourselves to open convex sets just for the sake
of simplicity. Indeed, the nonempty interior of a convex set is always dense in
the convex set; and every uniformly continuous quasiconvex function on a set has a
unique continuous extension to the closure of the set and this extension is uniformly
continuous and quasiconvex.

5.1. Extension of convex sets from a uniformly convex set. Like in Subsec-
tion 3.1, we shall first define a method of extension of convex sets from a uniformly
convex set.

First, let us recall that if x0 ∈ ∂A then Σ(x0, A) denotes the set of (nonzero)
supporting functionals to A at x0. Let us also define

K(x0, A) :=
⋂

f∈Σ(x0,A)

[f ≤ f(x0)] .

It is an easy exercise, based on the Hahn-Banach theorem, to show that

A =
⋂

x∈∂A

K(x,A)

and

K(x0, A) = x0 +
⋃
t>0

t(A− x0) .

Thus K(x0, A) is the closed convex cone with vertex at x0, determined by A.
Now we are ready for defining our extension method.

Definition 5.1. For an open convex set C ⊂ A, let us define its extension C̃ as
follows. If ∅ �= C �= A we define

C̃ :=
⋂

y∈A∩∂C

K(y, C) .

Moreover, for C = ∅ we put C̃ := ∅, and for C = A we put C̃ := X.

We shall need the following two, quite technical lemmas.

Lemma 5.2. Let C ⊂ A be an open convex set.

(a) C̃ is a closed convex set containing C.

(b) C̃ ∩ A = C.

(c) If x ∈ C̃ \A, c ∈ C and [c, x] ∩ ∂A = {x′}, then x′ ∈ int∂A(∂C ∩ ∂A).
(d) ∂∂A(∂C ∩ ∂A) ⊂ A ∩ ∂C.
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Proof.

(a) Follows easily from definitions and the text at the beginning of the present
section.

(b) The inclusion “⊃” follows from (a). To show the other inclusion let us

proceed by contradiction. Assume there exists x ∈ C̃ ∩A such that x /∈ C.
Take an arbitrary y ∈ C. Then there exists a unique z such that {z} =
(x, y) ∩ ∂C. Obviously, z ∈ A ∩ ∂C. Separating C from [x, z] we find
f ∈ X∗ such that f(u) < f(v) whenever u ∈ C and v ∈ [x, z]; in particular,
f(y) < f(z). It follows that f(x) > f(z). But f ∈ Σ(z, C) so x /∈ K(z, C).

This contradicts x ∈ C̃.
(c) The set B :=

⋃
t∈(0,1]

(
(1−t)x+tC

)
= conv(C∪{x})\{x} is an open convex

set that contains x′. Moreover, since B ⊂ C̃, (b) implies that B ∩ ∂A =
B ∩ ∂C and this set is contained in ∂C ∩ ∂A. Thus x′ ∈ int∂A(∂C ∩ ∂A) as
needed.

(d) Without any loss of generality, we can suppose that 0 ∈ C. Let x ∈
∂∂A(∂C ∩ ∂A). Then x ∈ ∂C ∩ ∂A and there exists a sequence {yn}n ⊂
∂A \C such that yn → x. Then the points y′n := yn

μC(yn)
(n ∈ N) belong to

∂C ∩A and converge to x
μA(x) = x. Consequently x ∈ ∂C ∩ A.

�

Lemma 5.3. Let A be bounded and let C ⊂ A be an open convex set. Let x ∈
C̃ \ C (= C̃ \A) and y ∈ A \ C. Then [x, y] ∩ C �= ∅.

Proof. If y ∈ A and the unique point y′ ∈ [x, y] ∩ ∂A belongs to C, we are done.
Otherwise we can consider y′ instead of y. So we can (and do) assume that y ∈ ∂A.

We can (and do) assume that 0 ∈ C \ aff{x, y}, and then x, y are linearly inde-
pendent. Let [0, x]∩∂C = {x′}, and notice that x′ ∈ int∂A(∂C∩∂A) by Lemma 5.2.
Consider the two-dimensional subspace Y := span{x, y}. Let H ⊂ Y be the closed
half-plane such that

∂Y H = R(x′ − y) and x, y ∈ H.

Since γ := H ∩∂A is a simple arc, there exists u ∈ ∂∂A(∂C ∩∂A)∩γ that separates
x′ and y in γ, that is, each of the two components of γ \ {u} contains just one of
the points x′, y. The half-line (0,∞)u intersects [x, y] at a point u′. So we have

tu = u′ = (1− λ)x+ λy for some t > 0, λ ∈ (0, 1).

Now consider f ∈ Σ(u,A) such that f(u) = 1. Since f ∈ Σ(u,C) and u ∈ A ∩ ∂C

(by Lemma 5.2(iv)), we must have f(x) ≤ 1 by the definition of C̃. Therefore,
t = tf(u) = (1− λ)f(x) + λf(y) ≤ 1 and hence u′ ∈ [0, u] ∩ [x, y] ⊂ C ∩ [x, y]. We
are done. �

The next proposition shows that our extension method gives possibility to control
distance properties of sets constructed by our extension method.

Proposition 5.4. Let C1 ⊂ C2 ⊂ A be open convex sets. If A is uniformly convex
and d(C1, A \ C2) =: ε > 0, then

d(C̃1, X \ C̃2) ≥ δ̃A(ε) ,

where the modulus δ̃A was defined in Definition 4.1.
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Proof. Fix arbitrary x ∈ C̃1 and y ∈ A ∩ ∂C2. By Lemma 5.3, there exists z ∈
C1 ∩ [x, y]. Since ‖z − y‖ ≥ ε, there exists a unique v ∈ [z, y] with ‖z − v‖ = ε.

Denoting w := z+v
2 , we know that the open ball U(w; δ̃A(ε)) is contained in A.

Moreover, since d(w,A∩∂C2) ≥ d(z, A∩∂C2)−‖w−z‖ ≥ ε− (ε/2) = ε/2 ≥ δ̃A(ε),

the ball U(w; δ̃A(ε)) does not intersect A ∩ ∂C2. Since z ∈ C1 ⊂ C2, we have

that w ∈ C2
A
. All this implies that U(w, δ̃A(ε)) is contained in C2. Since the cone

K(y, C2) contains U(w, δ̃A(ε)), it contains also the cone y+
⋃

t>0 t[U(w; δ̃A(ε))−y].

Since x = y+ τ (w− y) for some τ > 1, the last cone certainly contains U(x; δ̃A(ε)).

By the definition of C̃2 and by arbitrariness of x ∈ C̃1, we conclude that C̃1 +

δ̃A(ε)UX ⊂ C̃2 as needed. �

5.2. Extension of quasiconvex functions from uniformly convex sets. The
main result of the present section is now quite easy to obtain, after the work done
before.

Theorem 5.5. Let X be a normed space, A ⊂ X a nontrivial uniformly convex set,
and f : A → R a uniformly continuous quasiconvex function. Then there exists a
uniformly continuous quasiconvex function F : X → R that extends f and satisfies
F (X) ⊂ f(A).

Proof. As remarked at the beginning of the present section, we can (and do) assume
that A is open. Recall that A is bounded by Corollary 4.4. Assume that f is not
constant, and let ω : [0,∞) → [0,∞) be an invertible modulus of continuity for f

(see Lemma 2.1). The modulus of convexity δ̃A is an increasing bounded continuous
function on [0, diam(A)) (see [3, Corollary 2.1]), and hence it admits an extension,

denoted again by δ̃A, which is an increasing homeomorphism of [0,∞) onto itself.
Since f is bounded (see Fact 2.2),

ι := inf f(A) and σ := sup f(A)

are real numbers. For α ∈ R, the sets Cα := [f < α] are open convex subsets of A.
Moreover, Cα = ∅ for α ≤ ι, and Cα = A for α > σ. Let us define

Dα := int C̃α for α �= σ, and Dσ := X,

where C̃α is the extension of Cα defined in Definition 5.1. So Dα = ∅ whenever
α ≤ ι, and Dα = X whenever α ≥ σ. For ι < α < β < σ, we have d(Cα, A \ Cβ) ≥
ω−1(β − α) by Proposition 2.5, and hence

d(Dα, X \Dβ) = d(C̃α, X \ C̃β) ≥ δ̃A(ω
−1(β − α))

by Proposition 5.4. Notice that this implies that {Dα}α∈R is an Ω(X)-family of
open convex sets. By Proposition 2.5, the formula

F (x) := sup{α ∈ R : x /∈ Dα} (x ∈ X)

defines a quasiconvex extension of f such that F is uniformly continuous with
invertible modulus of continuity

ωF (t) = ω(δ̃−1
A (t)) (t ≥ 0).

Finally, it is easy to see that ι ≤ F (x) ≤ σ for each x ∈ X. We are done. �

The rest of this section contains some complementary results that follow easily
from our method.
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Remark 5.6. We say that a uniformly convex set C ⊂ X has δ̃-modulus of convexity

of power type p > 0 if there exists a constant k > 0 for which δ̃C(ε) ≥ kεp for each
ε ∈ (0, diam(C)).

By [3, Corollary 2.3], a power type p of δ̃C cannot be smaller than 2 (for balls
this is due to Nordlander [8]).

Let E ⊂ X, f : E → R and a ∈ (0, 1]. Recall that f is a-Hőlder on E if
it is uniformly continuous with an invertible modulus of continuity of the form
ω(t) = Lta (t ≥ 0), where L > 0 is a constant. Notice that 1-Hőlder functions are
just Lipschitz functions.

Theorem 5.5 and its proof enable us to get the following quantitative result about
extension of quasiconvex hőlderian functions.

Theorem 5.7. Let A be a nontrivial uniformly convex set with modulus of convexity

δ̃A of power type p ≥ 2 (see Remark 5.6), and f : A → R an a-Hőlder quasiconvex
function for some a ∈ (0, 1]. Then f admits an (a/p)-Hőlder quasiconvex extension

to the whole X, such that F (X) ⊂ f(A).

Proof. The function f is uniformly continuous with an invertible modulus of conti-

nuity of the form ω(t) = Lta, and we can (and do) assume that δ̃A is an increasing

homeomorphism of [0,∞) onto itself such that δ̃A(ε) ≥ kεp for each ε ≥ 0. Let
us follow the proof of Theorem 5.5. The sets Dα, Dβ (ι < α < β < σ) satisfy

d(Dα, X \ Dβ) ≥ δ̃A(ω
−1(β − α)) ≥ k[ω−1(β − α)]p = (k/Lp/a)(β − α)p/a =:

ω̃−1
F (β − α). Now it is easy to verify from Proposition 2.5 that the (quasicon-

vex) extension F from the proof of Theorem 5.5 is uniformly continuous with the
invertible modulus of continuity

ω̃F (t) = (L/ka/p)ta/p (t ≥ 0).

So F is (a/p)-Hőlder, and we are done. �

Notice that if f is Lipschitz on a nontrivial uniformly convex set A ⊂ X, the last
theorem assures only existence of a (1/p)-Hőlder extension of f , where necessarily
1/p ≤ 1/2 (see Remark 5.6). This means that our results in the present section
are not as “good” as the extension result from Subsection 3.2. The following two-
dimensional example, constructed in [5], shows that we cannot hope for an extension
result in the class of quasiconvex Lipschitz functions from a uniformly convex set
to the whole space.

Example 5.8 ([5]). There exists a Lipschitz quasiconvex function f on the open
circle A := {(x, y) ∈ R

2 : x2+y2 < 1} such that f admits no Lipschitz quasiconvex
extension defined on an open convex set containing A.

Using Theorem 3.4, we immediately obtain the following corollary in the spirit of
[4]. Let us stress that our extension does not necessarily preserve invertible moduli
of continuity, in this case.

Corollary 5.9. Let Y be a subspace of a normed space X, and A ⊂ X an open
convex set intersecting Y . Assume that the set A ∩ Y is nontrivial and uniformly
convex in Y . Then every uniformly continuous quasiconvex function on A ∩ Y
admits a uniformly continuous quasiconvex extension defined on X, in particular,
on A.
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Proof. Theorem 5.5 gives a uniformly continuous quasiconvex extension to Y . Then
apply Theorem 3.4. �
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