With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.
Gallo, A., Mosconi, M., Trevisi, E., Santos, R. R., Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies, <<DAIRY>>, 2022; 3 (3): 474-499. [doi:10.3390/dairy3030035] [https://hdl.handle.net/10807/227376]
Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies
Gallo, AntonioPrimo
;Trevisi, ErminioPenultimo
;
2022
Abstract
With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.