Insect proteins have been proposed as a promising alternative for feed and food formulations. In the present work protease-assisted extraction was studied as a way to separate and extract proteins from two different insect species: Alphitobius diaperinus (AD) and Hermetia illucens (HI). The proteolytic activity of seven enzymes (papain, pancreatin, dispase I, pepsin, protease from Bacillus licheniformis, bromelain and trypsin) was evaluated determining the protein extraction yield, the degree of hydrolysis (DH) and the released free amino acids (FAA). Both insects represent an interesting source of proteins, not only for their amount (more than 40% on dry matter) but also for the nutritional value, with essential amino acid profile exceeding the requirements proposed for human nutrition. Enzyme-assisted protein extraction, performed at laboratory scale, gave for HI an average yield of extraction of 71±8% and for AD 67±6%. Hydrolysates produced from HI gave a DH% ranging between 3 to 18%, whereas hydrolysates produced from AD yielded a DH% between 7 to 23%. The protein hydrolysates were composed by peptides and FAA (which accounted for more than 30% of the extracted protein fraction), which were released according to their abundance in initial protein. A moderate correlation between the DH% and the total amount of FAA was found, except for AD hydrolysed with trypsin and HI with papain. Based on these results, the production of hydrolysates was preliminary scaled up in a proof-of-concept experiment, focusing on the most promising insect-enzyme combination. The final product resulted to be rich in protein (60% on dry matter). This work support enzymatic hydrolysis as an effective method to extract and isolate proteins from insects, with minimal sample preparation, tailoring their composition, preserving the nutritional quality, decreasing the risk of allergic reactions and making them more accessible for their future use as feed/food supplements.
Leni, G., Soetemans, L., Jacobs, J., Depraetere, S., Gianotten, N., Bastiaens, L., Caligiani, A., Sforza, S., Protein hydrolysates from alphitobius diaperinus and hermetia illucens larvae treated with commercial proteases, <<JOURNAL OF INSECTS AS FOOD AND FEED>>, 2020; (4): 393-404. [doi:10.3920/JIFF2019.0037] [https://hdl.handle.net/10807/205802]
Protein hydrolysates from alphitobius diaperinus and hermetia illucens larvae treated with commercial proteases
Leni, GiuliaPrimo
;Sforza, Stefano
2020
Abstract
Insect proteins have been proposed as a promising alternative for feed and food formulations. In the present work protease-assisted extraction was studied as a way to separate and extract proteins from two different insect species: Alphitobius diaperinus (AD) and Hermetia illucens (HI). The proteolytic activity of seven enzymes (papain, pancreatin, dispase I, pepsin, protease from Bacillus licheniformis, bromelain and trypsin) was evaluated determining the protein extraction yield, the degree of hydrolysis (DH) and the released free amino acids (FAA). Both insects represent an interesting source of proteins, not only for their amount (more than 40% on dry matter) but also for the nutritional value, with essential amino acid profile exceeding the requirements proposed for human nutrition. Enzyme-assisted protein extraction, performed at laboratory scale, gave for HI an average yield of extraction of 71±8% and for AD 67±6%. Hydrolysates produced from HI gave a DH% ranging between 3 to 18%, whereas hydrolysates produced from AD yielded a DH% between 7 to 23%. The protein hydrolysates were composed by peptides and FAA (which accounted for more than 30% of the extracted protein fraction), which were released according to their abundance in initial protein. A moderate correlation between the DH% and the total amount of FAA was found, except for AD hydrolysed with trypsin and HI with papain. Based on these results, the production of hydrolysates was preliminary scaled up in a proof-of-concept experiment, focusing on the most promising insect-enzyme combination. The final product resulted to be rich in protein (60% on dry matter). This work support enzymatic hydrolysis as an effective method to extract and isolate proteins from insects, with minimal sample preparation, tailoring their composition, preserving the nutritional quality, decreasing the risk of allergic reactions and making them more accessible for their future use as feed/food supplements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.