Nanoparticles (NPs) are known to significantly alter plant metabolism in a dose-dependent manner, with effects ranging from stimulation to toxicity. The metabolic adjustment and ionomic balance of bean (Phaseolus vulgaris L.) roots and leaves gained from plants grown in a solid medium added with relatively low dosages (0, 25, 50, and 100 mg/L) of CeO2 NPs were investigated. Ce accumulated in the roots (up to 287.91 mg/kg dry weight) and translocated to the aerial parts (up to 2.78% at the highest CeO2 dosage), and ionomic analysis showed that CeO2 NPs interfered with potassium, molybdenum, and zinc. Unsupervised hierarchical clustering analysis from metabolomic profiles suggested a dose-dependent and tissue-specific metabolic reprogramming induced by NPs. The majority of differential metabolites belonged to flavonoids and other phenolics, nitrogen-containing low molecules (such as alkaloids and glucosinolates), lipids, and amino acids.

Salehi, H., Miras Moreno, M. B., Chehregani Rad, A., Pii, Y., Mimmo, T., Cesco, S., Lucini, L., Relatively Low Dosages of CeO2 Nanoparticles in the Solid Medium Induce Adjustments in the Secondary Metabolism and Ionomic Balance of Bean (Phaseolus vulgaris L.) Roots and Leaves, <<JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY>>, 2020; 68 (1): 67-76. [doi:10.1021/acs.jafc.9b05107] [http://hdl.handle.net/10807/204853]

Relatively Low Dosages of CeO2 Nanoparticles in the Solid Medium Induce Adjustments in the Secondary Metabolism and Ionomic Balance of Bean (Phaseolus vulgaris L.) Roots and Leaves

Miras Moreno, Maria Begona;Lucini, Luigi
2020

Abstract

Nanoparticles (NPs) are known to significantly alter plant metabolism in a dose-dependent manner, with effects ranging from stimulation to toxicity. The metabolic adjustment and ionomic balance of bean (Phaseolus vulgaris L.) roots and leaves gained from plants grown in a solid medium added with relatively low dosages (0, 25, 50, and 100 mg/L) of CeO2 NPs were investigated. Ce accumulated in the roots (up to 287.91 mg/kg dry weight) and translocated to the aerial parts (up to 2.78% at the highest CeO2 dosage), and ionomic analysis showed that CeO2 NPs interfered with potassium, molybdenum, and zinc. Unsupervised hierarchical clustering analysis from metabolomic profiles suggested a dose-dependent and tissue-specific metabolic reprogramming induced by NPs. The majority of differential metabolites belonged to flavonoids and other phenolics, nitrogen-containing low molecules (such as alkaloids and glucosinolates), lipids, and amino acids.
2020
Inglese
Salehi, H., Miras Moreno, M. B., Chehregani Rad, A., Pii, Y., Mimmo, T., Cesco, S., Lucini, L., Relatively Low Dosages of CeO2 Nanoparticles in the Solid Medium Induce Adjustments in the Secondary Metabolism and Ionomic Balance of Bean (Phaseolus vulgaris L.) Roots and Leaves, <<JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY>>, 2020; 68 (1): 67-76. [doi:10.1021/acs.jafc.9b05107] [http://hdl.handle.net/10807/204853]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/204853
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact