Background: This systematic review summarizes the current knowledge on the superimposition of three-dimensional (3D) diagnostic records to realize an orthodontic virtual patient. The aim of this study is to analyze the accuracy of the state-of-the-art digital workflow. Methods: The research was carried out by an electronic and manual query eectuated from ISS (Istituto Superiore di Sanità in Rome) on three dierent databases (MEDLINE, Cochrane Library and ISI WEB OF SCIENCE) up to 31st January 2020. The search focused on studies that superimposed at least two dierent 3D records to build up a 3D virtual patient—information about the devices used to acquire 3D data, the software used to match data and the superimposition method applied have been summarized. Results: 1374 titles were retrieved from the electronic search. After title-abstract screening, 65 studies were selected. After full-text analysis, 21 studies were included in the review. Dierent 3D datasets were used: facial skeleton (FS), extraoral soft tissues (ST) and dentition (DENT). The information provided by the 3D data was superimposed in four dierent combinations: FS + DENT (13 papers), FS + ST (5 papers), ST + DENT (2 papers) and all the types (FS + ST + DENT) (1 paper). Conclusions: The surface-based method was most frequently used for 3D objects superimposition (11 papers), followed by the point-based method (6 papers), with or without fiducial markers, and the voxel-based method (1 paper). Most of the papers analyzed the accuracy of the superimposition procedure (15 papers), while the remaining were proof-of-principles (10 papers) or compared dierent methods (3 papers). Further studies should focus on the definition of a gold standard. The patient is going to have a huge advantage from complete digital planning when more information about the spatial relationship of anatomical structures are needed: ectopic, impacted and supernumerary teeth, root resorption and angulations, cleft lip and palate (CL/P), alveolar boundary conditions, periodontally compromised patients, temporary anchorage devices (TADs), maxillary transverse deficiency, airway analyses, obstructive sleep apnea (OSAS), TMJ disorders and orthognathic and cranio-facial surgery.

Marradi, F., Staderini, E., Antonietta Zimbalatti, M., Rossi, A., Grippaudo, C., Gallenzi, P., How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review, <<APPLIED SCIENCES>>, 2020; 2020 (10): 1-16. [doi:10.3390/app10155354] [http://hdl.handle.net/10807/160361]

How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review

Marradi, Francesca
Co-primo
;
Staderini, Edoardo
Co-primo
;
Rossi, Andrea
Secondo
;
Grippaudo, Cristina
Penultimo
;
Gallenzi, Patrizia
Ultimo
2020

Abstract

Background: This systematic review summarizes the current knowledge on the superimposition of three-dimensional (3D) diagnostic records to realize an orthodontic virtual patient. The aim of this study is to analyze the accuracy of the state-of-the-art digital workflow. Methods: The research was carried out by an electronic and manual query eectuated from ISS (Istituto Superiore di Sanità in Rome) on three dierent databases (MEDLINE, Cochrane Library and ISI WEB OF SCIENCE) up to 31st January 2020. The search focused on studies that superimposed at least two dierent 3D records to build up a 3D virtual patient—information about the devices used to acquire 3D data, the software used to match data and the superimposition method applied have been summarized. Results: 1374 titles were retrieved from the electronic search. After title-abstract screening, 65 studies were selected. After full-text analysis, 21 studies were included in the review. Dierent 3D datasets were used: facial skeleton (FS), extraoral soft tissues (ST) and dentition (DENT). The information provided by the 3D data was superimposed in four dierent combinations: FS + DENT (13 papers), FS + ST (5 papers), ST + DENT (2 papers) and all the types (FS + ST + DENT) (1 paper). Conclusions: The surface-based method was most frequently used for 3D objects superimposition (11 papers), followed by the point-based method (6 papers), with or without fiducial markers, and the voxel-based method (1 paper). Most of the papers analyzed the accuracy of the superimposition procedure (15 papers), while the remaining were proof-of-principles (10 papers) or compared dierent methods (3 papers). Further studies should focus on the definition of a gold standard. The patient is going to have a huge advantage from complete digital planning when more information about the spatial relationship of anatomical structures are needed: ectopic, impacted and supernumerary teeth, root resorption and angulations, cleft lip and palate (CL/P), alveolar boundary conditions, periodontally compromised patients, temporary anchorage devices (TADs), maxillary transverse deficiency, airway analyses, obstructive sleep apnea (OSAS), TMJ disorders and orthognathic and cranio-facial surgery.
2020
Inglese
Marradi, F., Staderini, E., Antonietta Zimbalatti, M., Rossi, A., Grippaudo, C., Gallenzi, P., How to Obtain an Orthodontic Virtual Patient through Superimposition of Three-Dimensional Data: A Systematic Review, <<APPLIED SCIENCES>>, 2020; 2020 (10): 1-16. [doi:10.3390/app10155354] [http://hdl.handle.net/10807/160361]
File in questo prodotto:
File Dimensione Formato  
2020 applsci-10-05354-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/160361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact