Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel datamodels. Inthis article,wecompare threeprocedures fortestingthesignificance ofimpactmeasuresinthespatiallinearregressionmodels.Theseproceduresinclude (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulationmethod.InaMonteCarlostudy,wecomparethefinitesampleproperties of these procedures.
Arbia, G., Bera, A., Dogan, O., Taspinar, S., Impact measures in spatial autoregressive models, <<INTERNATIONAL REGIONAL SCIENCE REVIEW>>, 2019; 2019 (1): 1-36. [doi:10.1177/0160017619826264] [http://hdl.handle.net/10807/132733]
Impact measures in spatial autoregressive models
Arbia, GiuseppePrimo
;
2019
Abstract
Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel datamodels. Inthis article,wecompare threeprocedures fortestingthesignificance ofimpactmeasuresinthespatiallinearregressionmodels.Theseproceduresinclude (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulationmethod.InaMonteCarlostudy,wecomparethefinitesampleproperties of these procedures.File | Dimensione | Formato | |
---|---|---|---|
arbia bera et al (2019).pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
573.32 kB
Formato
Adobe PDF
|
573.32 kB | Adobe PDF | Visualizza/Apri |
IRSR826264_final.pdf
non disponibili
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
604.01 kB
Formato
Unknown
|
604.01 kB | Unknown | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.