Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel datamodels. Inthis article,wecompare threeprocedures fortestingthesignificance ofimpactmeasuresinthespatiallinearregressionmodels.Theseproceduresinclude (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulationmethod.InaMonteCarlostudy,wecomparethefinitesampleproperties of these procedures.

Arbia, G., Bera, A., Dogan, O., Taspinar, S., Impact measures in spatial autoregressive models, <<INTERNATIONAL REGIONAL SCIENCE REVIEW>>, 2019; 2019 (1): 1-36. [doi:10.1177/0160017619826264] [http://hdl.handle.net/10807/132733]

Impact measures in spatial autoregressive models

Arbia, Giuseppe
Primo
;
2019

Abstract

Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel datamodels. Inthis article,wecompare threeprocedures fortestingthesignificance ofimpactmeasuresinthespatiallinearregressionmodels.Theseproceduresinclude (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulationmethod.InaMonteCarlostudy,wecomparethefinitesampleproperties of these procedures.
Inglese
Arbia, G., Bera, A., Dogan, O., Taspinar, S., Impact measures in spatial autoregressive models, <<INTERNATIONAL REGIONAL SCIENCE REVIEW>>, 2019; 2019 (1): 1-36. [doi:10.1177/0160017619826264] [http://hdl.handle.net/10807/132733]
File in questo prodotto:
File Dimensione Formato  
arbia bera et al (2019).pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 573.32 kB
Formato Adobe PDF
573.32 kB Adobe PDF Visualizza/Apri
IRSR826264_final.pdf

non disponibili

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 604.01 kB
Formato Unknown
604.01 kB Unknown   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/132733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact