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Abstract

Researchers often make use of linear regression models in order to assess the
impact of policies on target outcomes. In a correctly specified linear regression
model, the marginal impact is simply measured by the linear regression coefficient.
However, when dealing with both synchronic and diachronic spatial data, the
interpretation of the parameters is more complex because the effects of policies
extend to the neighboring locations. Summary measures have been suggested in the
literature for the cross-sectional spatial linear regression models and spatial panel
data models. In this article, we compare three procedures for testing the significance
of impact measures in the spatial linear regression models. These procedures include
(i) the estimating equation approach, (ii) the classical delta method, and (iii) the
simulation method. In a Monte Carlo study, we compare the finite sample properties
of these procedures.
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In evaluating the effectiveness of economic policies, researchers often make use of
linear regression models in order to assess their impact on a target outcome. In a
standard nonspatial linear regression model, the regression parameters represent the
partial derivative of the dependent variable ¥ with respect to an independent variable
X and, as a consequence, they can be straightforwardly interpreted as the impact on
variable Y of a unitary increase or of a one percent increase (when in log) of each
independent variable X. In contrast, in the spatial econometric models containing
spatial lag terms of dependent variable, the interpretation of parameters is less
immediate and requires some clarification. In fact, due to the spatial transmission
mechanism inherent to spatial modeling, a variation of variable X observed in
location i not only has an effect on the value of variable Y in the same location but
also on the same variable observed in other neighboring locations (see Anselin 1988;
Kelejian, Tavlas, and Hondroyiannis 2006; LeSage and Pace 2009; Debarsy, Ertur,
and LeSage 2012; Lee and Yu 2012; Kelejian, Murrell, and Shepotylo 2013; Elhorst
2010, 2014b; Arbia 2014; LeSage and Chih 2016).

In a spatial regression model that has a spatial lag of the dependent variable, the
marginal effects accounting will require the analysis of £ different n x n matrices,
where k is the number of explanatory variables and » is the number of spatial units.
To ease the interpretation and presentation of marginal effects, summary measures,
that is, impact measures, have been suggested in the literature. Since the diagonal
elements of these » x n matrices contain the own-partial derivatives, while the oft-
diagonal elements represent the cross-partial derivatives, LeSage and Pace (2009)
define the average of the main diagonal elements as a scalar summary measure of
direct effects and the average of the off-diagonal elements as a scalar summary
measure of indirect effects. The sum of direct and indirect effects is labeled as the
total effect. Other impact measures can also be defined by using the relevant row or
column sums of these 7 x n matrices for a plethora of purposes. Although the impact
measures are functions of estimated parameters, we cannot use directly the estimated
parameters and the corresponding standard errors to decide whether the impact
measures are statistically and economically significant. In order to draw inference
on impact measures, we need to estimate their dispersions as well.

The purpose of this article is to develop general methods for the estimation of
dispersions of impact measure and investigate their finite sample properties. We first
consider three general procedures: (i) the estimating equation approach, (ii) the
classical delta method, and (iii) the simulation method. We show how these methods
can be used to derive the asymptotic standard errors of the impact measures in cross-
sectional spatial autoregressive (SAR) models containing a spatial lag of the depen-
dent variable. Second, we derive the standard error of some well-known impact
measures in some particular cases. Third, we investigate the finite sample properties
of the proposed methods through an extensive simulation study. Our results on the
impact measures are applicable only for exogenous variables introduced linearly in
the regression equations.
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The estimating equation approach adopted in this article is based on Pierce
(1982). In this approach, the statistic of interest, that is, the impact measure, is
embedded into the maximum likelihood (ML) estimation framework for the purpose
of determining its asymptotic distribution and covariance. Thus, the asymptotic
variance formula suggested by Pierce (1982) is a natural by-product of the ML
estimation. We show how this approach can be extended to the impact measures
suggested for SAR models. In the classical delta method, the first-order Taylor
approximations of impact measures along with the asymptotic distribution of esti-
mator are used to determine the asymptotic variances of impact measures. For the
details on the delta method, see Oehlert (1992) and van der Vaart (1998). For the
applicability of the classical delta method, Elhorst (2010, 23) writes, “However,
owing to the complexity of the matrix of partial derivatives [see (6)] and because
every empirical application will have its own unique number of observations (N) and
spatial weights matrix (), it is almost impossible to derive one general approach
that can be applied under all circumstances.” Though the delta method does not
provide a single formula that can be used for all spatial models, we show that this
method can be easily used to determine the asymptotic standard errors of some well-
known impact measures with simple adjustments in the general expressions derived
from the first-order Taylor approximations.

For cross-sectional models, LeSage and Pace (2009) suggested that the empirical
distribution of the impact measures can be constructed using a large number of
simulated parameters drawn from the asymptotic distribution of parameters. We
call this method the simulation method. Alternatively, LeSage and Pace (2009) also
suggested to derive estimates of the dispersions for the impact measures by Bayesian
Markov chain Monte Carlo (MCMC). Since MCMC estimation yields samples
drawn from the posterior distribution of the model parameters, these can be used
to produce a posterior distribution for the impact measures. This approach is widely
accepted in the literature and found application in the existing software (e.g., in the
package spdep of R), although it presents a series of drawbacks. First of all, the
achievement of the convergence of the sampler in nontrivial cases is computation-
ally time-consuming. Second, while available for scalar summary measures, no
result is yet available for the standard errors of the vector measures referring to the
impacts in the various locations that constitute the study area. Finally, the accuracy
of the MCMC method depends crucially on the (multivariate normal) distributional
assumptions.

The article is organized as follows. In the second section, we specify the SAR
model and provide assumptions that are required for the consistency and asymptotic
normality of the ML estimator (MLE). In the third section, we describe various
impact measures for the SAR models. In the fourth section, we provide general
expressions for the asymptotic standard error of various impact measures described
in the third section. In the fifth section, we describe our Monte Carlo setting and
report the simulation results for (i) the Pierce method, (ii) the delta method, and (iii)
the simulation method. The sixth section concludes and suggests possible extensions
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of the approach presented here. The simulation results and some technical deriva-
tions are relegated to appendices.

The Model Specification
We consider the following SAR model:

Y = A WY + XBy + &, (2.1)

where Y = (y1,y1, ...,y,) is the nx 1 vector of dependent variable,
X = (Xq, ... ,Xg) is the n x k matrix of nonstochastic regressors with the matching
parameter vector 3, W is the n x n exogenously given spatial weight matrix that has
zero diagonal elements and & = (§,,&,, ... ,&,) is the n x 1 vector of regression
disturbance terms. X includes an intercept term. We assume that &; s are i.i.d. normal
random variables with mean 0 and variance 3. The spatial lag term is denoted by
WY, and the associated scalar parameter A is called the SAR parameter. The para-
meter vector 0 = (Ao, B, 02)" represents true values, while 6 = (A, p, %) any
arbitrary value in the relevant parameter space. The quantities ¥, W, X, and & in
equation (2.1) are allowed to depend on the sample size n in order to form triangular
arrays (see Lee 2004; Kelejian and Prucha 2010). However, for the notational
simplicity, we suppressed the subscript  in equation (2.1). Let S(A) = (1, — A W),
G(L) = WS™1(L), S(h) = S, and G(Xg) = G, where I, is the n x n identity matrix.
We consider equation (2.1) under the following assumptions.

Assumption 1: The disturbance terms &; s are i.i.d. normal random vari-

ables with mean 0 and variance 0(2).

Assumption 2: (i) The sequences of matrices { W} and {S} are uniformly
bounded in both row and column sums. (ii) {S~'(A)} are uniformly
bounded in either row or column sums, uniformly in A in a compact para-
meter space A. (iii) The true X is in the interior of A.

Assumption 3: (i) The elements of X are uniformly bounded constants for
all n and lim,_. 1X'X exists and is nonsingular. (ii) lim, .1
(X, GXB,) (X, GXB,) exists and is nonsingular.

Assumptions 1 and 2 provide the main features of disturbance terms and weights
matrix. The uniform boundedness property of {#} and {S} in Assumption 2 is
considered by Kelejian and Prucha (1998, 2010) in order to limit spatial dependence
among units to a tractable degree. The additional uniform boundedness of {S~!(1)}
is required to justify the ML estimation (Lee, 2004). In the literature, (i) Assumption
3 is usually adopted for analytical simplicity; (ii) Assumption 3 requires that GX 3,
and X are not asymptotically multicollinear, which ensures the global identification
of 0y in the ML framework (Lee, 2004). In certain interaction scenarios, elements of
weights matrices can be a function of sample size n. For equation (2.1), Lee (2004)
assumes a large group interaction setting and specifies elements of the weights
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matrix by wy; = O(1/h,), where w;; is the (i,/)th element of W and {A,} is a
sequence of real numbers that can be bounded or divergent with the property that
lim, oA, /n = 0. For simplicity, we assume interaction scenarios in which {A,} is
bounded.

Under Assumption 1, the log-likelihood function of the model can be
expressed as

1
mgwy:f%mﬁofgm¥+mmmﬂfaﬁ'@ﬁ@%
where £(0) = S(L)Y — XB. Then, the MLE 6 is defined by 0 = argmaxglogL(0).
Under our stated assumptions, it can be shown that 0 is a consistent estimator of 0
with the following limiting distribution (Lee, 2004):

\/E(é - OO)LN(O7271)5 (22)
T 1 azlogL(%))
where X = lim,,_ . E ( " o000 and
1 , 1 ,
6—(2)nXX G—%nx GXB, 0
10°logL(6o) R y L ' ! / R
5(7W> = o3 OBIX o (OXB) (GxXPy) +0((G+6)6) 5 w(@) |
1 1

For statistical inference, we can use the MLE 6 to construct a plug-in estimator of
2 (Lee, 2004). As we will show in the fourth section, the limiting distribution in
equation (2.2) is essential for our results on the impact measures.

Impact Measures in SAR Models

In spatial models, the interpretation of the coefficients is different from nonspatial
models due to the possible presence of spatial transmission mechanisms, external-
ities, and spillovers. In this section, we show how several impact measures are
formulated for the SAR models. Under the assumption that S is nonsingular, the
model can be written in the reduced form as'

Y =S"XB,+S'E. (3.1)

The impact of a unitary change in the variable x; in one location, say j, on the
variable y observed in location i can then be described through the partial derivatives
OE(y;)/0x which can be arranged in the following matrix:
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[OE(y1) OE(y1) OE(y1) 7

Ox1 O Oxw
OE(y;) OE(y,) OE(y2)
IW:?@: Orp Qe Qo | —g7lg, (32)
Xk

OE(y,) OE(y,)  OE{p)

Ox1x Oxos o OXye

where f3; is the kth element of . On this basis, we can derive a series of impact
measures for each of the independent variables x;; included in the model (Arbia
2014; Elhorst 2010, 2014b; LeSage and Pace 2009). In particular, three scalar
measures can be derived. The first, called the Average Direct Impact (ADI), refers
to the average total impact of a change in x;; on y; for i = 1, ... ,n, which can be
calculated by taking the average of all diagonal entries in the matrix S~!f;:

ADI = —trS B,) = ZIMP,,, (3.3)

where IMP; = 0E(y;)/0x;. The second impact measure, called Average Total
Impact (ATI), is a global measure defined simply as the average of all entries in
the matrix S~!f;:

1 1 o—1
ATL= 1,571, = ZZIMPU, (3.4)

llj

where IMP;; = OE(y;)/0xj and /, is the n x 1 vector of ones. The third impact
measure is the Average Indirect Impact (AIl) and is defined as the difference
between ATI and ADI:

All = ATI — ADI, (3.5)

and is thus simply the average of all off-diagonal entries of matrix S~!,.

Two vector measures are also available defined as the Average Total Impact To
(ATIT) an observation and the Average Total Impact From (ATIF) an observation.
ATIT is a measure related to the impact produced on one single observation by all
other observations. For each observation i, this is calculated as the sum of the i th
row of matrix S~'f;:

1 1
ATIT; =€ SR, == IMP;, i=1,...,n, 3.6
ne By n; ij> 1 n (3.6)
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Figure 1. The effect of Ay on impact measures.

where e; is the ith unitary vector. In contrast, ATIF is related to the impact produced
by one single observation on all other observations. For each observation, this is
calculated as the sum of the jth column of matrix S~!f;:

1 1
ATIF, =—I'S7'ep, ==) IMP,, i=1,...,n. 3.7
n n eBk n; y l n ( )

Our results on ADI, ATI, and All indicate that the magnitude of these impact
measures depends on (i) the specification adopted for W, (ii) the strength of spatial
dependence measured by A, and (iii) the magnitude of coefficient estimate for 3. In
the case of ATIT and ATIF measures, besides these factors, the position of the region
in the space also affects the magnitudes of ATIT and ATIF measures. From the
series expansion S~'B, = (I — MW) "By = (I + MW + W+ 0303 + ..)B,,
it is also obvious that the sign of Ay will affect the magnitude of all impact measures.
In particular, when Ay < 0, we have alternating signs in the series expansion due to
the alternation between odd and even powers. As a consequence, the negative effect
will be moderated by the presence of positive effects produced by the even powers.
To illustrate the effect of Ay on the magnitudes of ADI, ATI, and AIl, we set §; = 1
and consider row-normalized rook and queen contiguity—based weight matrices over
10 x 10 regular square lattice grid. We calculate the magnitude of each impact
measure as Ag varies from —0.9 to 0.9. The results are illustrated in Figure 1. The
figure shows that the sign of A not only affects the sign of ATI and AIl measures,
but it also affects their magnitudes. As expected, the magnitudes of impact measures
in absolute value are relatively larger when A gets positive large values. In the case
of ADI measure, we have ADI = (1 4 AJtr(W?)/n + Ajte(W3)/n + ...)By. In this
expansion, the magnitudes of odd powers are less than that of even powers, and the
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trace terms are nonnegative since all elements of /7 are nonnegative. Thus, in this
case, the sign of ADI measure is completely determined by the sign of ;. The figure
also shows that the magnitude of ADI measure in absolute value is relatively slightly
larger when 2 is positive and large, especially in the case of queen weights matrix.

The Asymptotic Standard Errors of Impact Measures

In this section, we consider three general methods to derive the asymptotic standard
errors of the impact measures described in the previous section. The first method is
based on the estimating equation approach suggested by Pierce (1982; the Pierce
method hereafter). The second approach is the classical approach based on the delta
method. The final approach is the simulation method suggested by LeSage and Pace
(2009).

We start with the Pierce method and provide a general argument by following
Pierce (1982). Let yy, ... ,y, be the sequence of (not necessarily identical nor
independent) random variables whose joint density function depends on a vector
of parameters V. Let V= \I/(Y) be the MLE of \, where ¥ = (y1,¥2, ... ,y,)". Let
U(Y,\r) be a vector-valued statistic. Under some regularity conditions, Pierce
(1982) suggests a method that can be used to determine the asymptotic variance
of certain type of statistics. The first condition is about the joint limiting distribution
of /n(\y — ) and \/nU(Y, ). Pierce (1982) assumes that these two random vari-
ables have a limiting joint multivariate normal distribution, namely,

e [ ) »

where the variance—covariance matrix may depend continuously on \s. Note that this
assumption is stated for the unfeasible statistic U(Y, ). For the second regularity
condition, Pierce (1982) assumes that there exists a matrix B, possibly depending
continuously on s, such that

VaU(Y ) = VaU(Y ) + BVl — ) + 0,(1). (4.2)

When U is differentiable with respect to \, this result follows from a first-order
expansion and B is simply given by

B— HIEECE<%\TJ;\|’)) (4.3)

Finally, third required condition is that E(U(Y, \r)) is independent with \s. Under
these conditions, Pierce (1982) show that

\/EU(Y,\I’)LN(O’ Vi1 — BV»B'). (4.4)

This result is based on the expansion in equation (4.2), which implies that
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Var(\/ﬁU(Y,q})) — Vi, + BVayB + ViaB' + BV, (4.5)

The second assumption, that is E(U(Y, )) is independent with s, can be used to
simplify equation (4.5). Let /(Y,\/) be the log-likelihood function of the sample.
Then, under the second assumption, we have

CE(U(Y, V)
oy’
Changing the order of integration and differentiation above yields

/ Ewé\);;\ll)exp(l()’, ar + [ Vv v (\}ﬁa’g ﬁ) exp(I(Y,1))dY = 0.

3
-5 / UY, W)exp(I(Y,0))dY = 0. (4.6)

(4.7)

This last result implies that

—B' = Cov (\}al(é/wq;) \/EU(Y,q;)). (4.8)

Using the asymptotic normality of score function under certain regularity condi-
tions (see Newey and McFadden 1994), we can show that V>, ﬁ al(aY\I;w) is asympto-

tically equivalent to \/z#(\y — V). Hence,

1 az(y )
N

~VnB' = Cov (sz WVnU(Y, \|/)> ~ Cov(v/n( =), VU (Y, ) = V.

(4.9)

This last result can be considered as a generalized information matrix equality
(Newey and McFadden 1994). Then, the Pierce result in equation (4.4) is obtained
by substituting V5, = —V5,B’ and V1, = —BV», into equation (4.5).

Next, we apply the general result in equation (4.4) to our stated impact measures
to determine their corresponding asymptotic variances. We set y = A in formulating
the statistics of interest for our impact measures ADI, AIl, ATI, ATIF, and ATIT.
These statistics are listed below.

))P — (S

LBy — ‘l’ By

By — Ltr(STTMBY) — LS By + Ler(STIBy).
)L.B k——eSllBk, i=1,....,n

Be —LrSTey, i=1,...,n

UADI( 71) ltr( (
UATI( 71) ll/ (X)
UAII( X) ll/ (71)],,
UATIT; (Y ) 1(71
UAT (1) = 11:, '(M)e

A

Using the Pierce method, we determine the asymptotic distributions of these
statistics in the following proposition.
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Proposition 1: Under our stated assumptions, the following results hold.
1. In the case of UAPI(Y, 1), we have
A 1 -
ADI _ -1 s
VAU (YR = ﬁ(tr(s (MBe) — tr(s)By)
4, N(o7 lim‘niztrz(S*I)Var(\/ﬁﬁk) - nl—2tr2(WS’2) B§Var(\/7,(i - xo))),
(4.10)
2. In the case of UAT/(Y,}), we have
. 1 o
ATI R & e | _ o1
N A ﬁ(zns (Ml — IS l,,Bk)
2 2
iN(O, lim (%l;s"l,,) Var(viap,) — (%z;S*WS*Iz,,Bk) Var(\/ﬁ(i—xo))).
(4.11)
3. In the case of UA(Y, L), we have
All A_L/—IAA_ 1R ) _ 7ol —1
VUMY, 3) = (187 (0B — (57 (e ) = 1,87y + (S ™'By))
2
. N(0, lim (%ILS_IZ,, —%tr(S_l)) Var(y/nfy)
1 /1 o—1 —1 1 -2 ? \
— (0SS LB~ u(S B, Var(ﬁ(k—%o)).
(4.12)
4. In the case of UATTi(Y, 1), we have
ATIT; ) 7L VLR YA T v |
VU (Y,x)_ﬁ(e,s (\)laBy — €S lan)
d . L, : A 1, —1 ? \
LV (0, fim (~eis7' ) Var(VaB,) — (S¢S s~y Var(\/ﬁ(kfko)) .

(4.13)
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5. 1In the case of UATIFi(Y, ), we have

JAUATIF (v, X) _ \/Lﬁ (l;S‘l(i)ein — I;S_leiﬁk)

2 2
i»N(O,nlLI‘gO (%l;S’le,-) Var(yv/nB,) — (%l;S’lWS’le,-Bk) Var(\/ﬁ(i - ko))).
(4.14)

Proof: See Appendix A.

We can use the plug-in estimators to estimate the asymptotic variances in Pro—
position 1. For example, the estimated variance of UAP!(Y, ) can be formulated as®

Var(UM(r. ) = (ir (5710 Var(vaby) — 5 (ws () ) Var (il ~ m)),
(4.15)

where Var(y/np,) and Var(y/n(k — X)) can be recovered from the plug-in estima-
tor of \/ﬁ(é —0p) in equation (2.2). Similarly, the plug-in estimators for other
asymptotic variances in Proposition 1 can be formulated.

Another asymptotic method that can be used to determine the asymptotic
variances of impact measures is the classical delta method (Taspinar, Dogan,
and Vijverberg 2018). In general, the delta method is used to determine (i) the
variance of a function of a random variable, (ii) the bias correction for the
expectation of a function of a random variable, and (iii) the limiting distri-
bution of a function of a random variable (Ochlert 1992; van der Vaart 1998).
In the following proposition, we show how this method can be used to derive
the limiting distribution of each impact measure considered in the second
section.

Proposition 2: LetJ be the asymptotic covariance of v/z1(A — Ao, B, — B)'-
Then, under our stated assumptions, the following results holds.

1. For the ADI measure, we have
1 —1/5\q -1 d : /
WG (tr(S (x)ﬁk) ~tr(S Bk))HN(OMlLrgCAlJAl), (4.16)

where 4; = [L tr(S7'GBy), Lir(S1)].

2. For the ATI measure, we have
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U fa )i ) .
W (Bkl;S ), — BellS lln)i N(o, lim AzJA’z), (4.17)

where 4, = [LB,,.S™'Gl,,, L15711,).

s ntn

3. In the case of AIl measure, we have

—= ((Butss™ ot —ee(57 RIBe) ) — (Butss™1 — w(s™)By ) ))

HN(O, lim (4> — 4,)J (4 —Al)'). (4.18)

&‘_

n—00

4. For the ATIT; measure, we have

U ) J .
%(e’[S YO LBy — €S 11,1[3,{)HN(07 Tim A3JA43), (4.19)

where A3 = [Le/;S7'GL,By, 1e/iS7U,].

5. For the ATIF; measure, we have

1 o

= (l,’,S*I (Meipy — l;S’le,-Bk)i» N(0, lim A4JA4}), (4.20)
'\/ﬁ n—0o0

where 4, = [% l,’qS’lGe,-Bk, %ll’qS’lei].

Proof: See Appendix B.

The asymptotic variances stated in Proposition 2 can estimated by the corre-
sponding plug-in estimators. For example, Proposition 2 indicates that the asymp-

totic variance of ADI measure can be estimated by %/Ilf/il, where
A =L te(ST (W)GA)B), Ltr(S7 (1)), and J is the estimated asymptotic covar-

iance of \/7(A — ko, B; — B;)’. The estimates of other asymptotic variances in Pro-
position 2 can be obtained similarly.

Remark 1: Note that our suggested estimators for the asymptotic variance
of impact measures in Proposition 2 are specific to the kth explanatory
variable. The estimators for other explanatory variables can be easily
obtained by adjusting only the J term. For example, the estimators for the
various impact measures of the jth regressor is obtained by defining the J
term as the estimated asymptotic covariance of \/E(X — Ao, Bj - Bj)'.
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The simulation approach suggested by LeSage and Pace (2009) utilizes the
parameter estimates and the estimated asymptotic covariance matrix of a con-
sistent estimator. Let L be a lower-triangular matrix recovered from the Cho-
lesky decomposition of Var(0) and 3 be a random vector that has a multivariate
standard normal distribution. Then, random draws of the parameter vector are

generated according to
0 =0+Lx9, for r=1,...,R. (4.21)

A sequence of impact measures can be calculated by using the sequence
{0"} for =1, ... ,R. The mean and the standard deviation calculated from
each sequence of impact measures can be used as the point estimate and the
standard error of the corresponding impact measure. LeSage and Pace (2009)
also consider the Bayesian estimation method for SAR models. In the Baye-
sian MCMC approach, a sequence of random draws is generated for each
parameter. Similarly, a sequence of random draws can be generated for each
scalar summary measure of impact estimates. Hence, the mean and the stan-
dard deviation calculated from each sequence of impact measures can be used
as the point estimate and the standard error of the corresponding impact
measure.

Remark 2: The three methods that we presented in the preceding para-
graphs can be extended to the following spatial Durbin model:

Y = MWY + XBy + WX + &, (4.22)

where WX is the spatial lag of X with the matching parameter vector &y. From the
reduced form ¥ = S71XB, + S~1WX8) + S7IE, we have

[OE(y1) OE(n) OE(y1) T

6x1k aka o 6xnk
OE(y,) OE(y2) 0E(y2)
IMP = ag’(/y) _ 6x1k aX2k o 6xnk _ SilBk + S71 WSk,
Xk

oE(y,) OE(y,)  0E(y)

Ox1y Oxos o OX e

(4.23)

where B, and 9 are the kth elements of B, and d, respectively. Then, in this case,
the impact measures are in the following forms:
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ADI =1 tr(S7"By + Ltr(S71W) &y

ATL =108, B, + L1051 Wi, 3.

All = ATI — ADI =17/ 8711,8, + 10/ S7'Wi,8; — Ltr(S™)B;, — Ler(S™'W)3y.
ATIT; =L & S7L,B, + 1/, S WS, i=1,...,n

ATIF; =105 ey + 105 ' Weid, i=1,....,n

M N

Following our arguments given for the proofs of Propositions 1 and 2, the Pierce
method and the delta method can be used to determine the asymptotic distributions
of these statistics. We provide these results in Appendix C.

Remark 3: Note that the calculations of impact measures require the eva-
luation of S~! (X) Also our results in Propositions 1 and 2 indicate that the
dispersions of impact measures also require the evaluation of S~'(A). It is
clear that the computational cost is relatively high in the case of simulation
method as it requires multiple evaluations of S~ (A). When the sample size
is large, the evaluation of S~! (71) can be time consuming and even may not
be feasible due to memory problems. LeSage and Pace (2009) suggest an
approximation approach based on the series expansion
S~ = > N W In this approach, we can approximate the infinite sum
with the truncated sum Zq MW/, where g is a large number and thus avoid
the computational problems associated with the inversion of S(A). See
LeSage and Pace (2009) and Elhorst (2014a) on the software
demonstrations.

A Monte Carlo Study

In this section, we design a Monte Carlo simulation to investigate the finite sample
properties of the methods described in the preceding section. We assume the fol-
lowing data generating process:

i = Doy _wipy+ By + Brxu + Boxa + &, (5.1)
i#f
fori =1,2, ... ,n, where n € {400,900}. We specify two weights matrices corre-

sponding to rook and queen contiguity cases. Assume that n spatial units are ran-
domly allocated into a lattice of k& x m squares, where k = m = /n. In the rook
contiguity case, w; = 1 if the spatial spatial unit j is in a square that is adjacent (left/
right/above or below) to the square of the spatial unit i. In the queen contiguity case,
wj; = 1 if the spatial unit; is in a square that is adjacent to or shares a corner with the
square of the spatial unit i. In both cases, /¥ is then row normalized.

For the regressors x; and x;, we allow for spatial correlations in both regressors
and setx; = 0.7Wx; + €; and x, = 0.3Wx, + €5, where the elements of ¢; and ¢, are
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drawn independently from a uniform distribution on the unit interval (Pace, LeSage,
and Zhu 2012). We set (By, B, B,)" = (0.2,0.5,—0.5)". In order to allow for weak,
moderate, and strong spatial dependence, we assume that the autoregressive para-
meter A takes on values from the set {—0.8,—0.5,—-0.2,0,0.2,0.5,0.8}. We con-
sider two cases for the distribution of &,. In the first case, &;°s are drawn
independently from the normal distribution that has mean zero and variance o3.
To analyze the impact of nonnormality in disturbances, in the second case, we set
&, = ¢ x 934, where c is a constant and 9, is a random variable that has the student’s ¢
distribution with 5 degrees of freedom. To measure the degree of signal-to-noise in
our setting, we use the following R* measure (Pace, LeSage, and Zhu 2012):

=1
R oatr(S S '
BX'S 'STIXP, + odtr(S TS

(5.2)

We fix the signal-to-noise ratio to R>=0.5 as Xy varies over
{-0.8,-0.5,-0.2,0,0.2,0.5,0.8}. To do so, we solve R* = 0.5 for 7 in equation
(5.2) and obtain

v oo
i) = LD (5:3)
tr(S" ST

We then determine o3(Ao) values as Ay varies over {—0.8,—0.5,
—0.2,0,0.2,0.5,0.8} and use these values in our simulation for the normal distri-
bution case. In the nonnormal case, we set ¢ = \/3/_5 x 5o(Ao), so that R? = 0.5 in
all cases. As a result, the signal-to-noise ratio is fixed to 0.5 in all cases. For each
specification, the resampling is carried out 5,000 times.

We will focus on the relative performance of the following methods: (i) the Pierce
method, (ii) the delta method, and (iii) the simulation method.? The performance of
each method will be analyzed in the context of the ADI, All, and ATI measures. For
each impact measure, we report (i) the empirical standard deviation (referred to as
Emp.), (ii) the estimated standard error based on the Pierce method (say Pier.), (iii)
the estimated standard error based on the delta method (say Del.), and (iv) the
estimated standard error based on the simulation method (say Sim.). For the esti-
mated standard error, we also calculated their percentage deviation from the empiri-
cal standard deviation.* A low percentage deviation for a method indicates that the
method provides a good approximation to the finite sample distribution of the impact
measure, while a large percentage deviation shows that the method provides a poor
approximation. Furthermore, we will analyze the finite sample properties of the
relevant Wald test for each impact measure in terms of size and power.

The simulation results are presented in Tables D1-D7. In order to give an overall
assessment for the performance of each method, in the following tables, we highlight
the estimated standard errors that have percentage deviations in the (—5%, + 5%)
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interval in Tables D1 and D2. These estimated standard errors are presented in blue
color and bold font. We summarize our main findings as follows.

1.

In all tables, the empirical standard deviations become larger when the SAR
parameter is positive and large. The same pattern is also true for the esti-
mated standard errors reported by each method. That is, all methods report
relatively larger estimated standard errors as A increases from —0.8 to 0.8.
Consider the ADI of X; in Table D1. When Ay = 0.2 in the Rook contiguity
case for n = 400, the reported values for the empirical standard deviation,
the Pierce method, the delta method, and the simulation method are, respec-
tively, 0.106, 0.107, 0.106, and 0.107, while the corresponding values are
0.346, 0.340, 0.339, and 0.340 when Ay = 0.8. The extensive simulation
results in Arraiz et al. (2010) also show that the MLE of A reports rela-
tively large empirical standard deviations and root mean square errors in
the context of a SARAR(1,1) specification when %, increases from —0.8
to 0.8.

In all tables, the empirical standard deviations and the estimated standard
errors become relatively smaller when the sample size increases to n = 900.
In terms of empirical standard deviations and estimated standard errors, the
simulation results based on the rook contiguity case are similar to those based
on the queen contiguity case. Also, the comparison of results in Table D1 and
D2 indicates that the nonnormality of disturbance term has negligible effects
on the performance of each method.

Looking at the results in Tables D1 and D2 for the ADI measure, all methods
produce estimates that are mostly in the interval of (—5%, + 5%) for both X;
and X;. There are only some exceptions when Aq is negative and large in
the case of Pierce and simulation methods. For example, when g = —0.8 in
the Rook contiguity case for the Pierce method, and when Ay = —0.8 in the
Queen contiguity case for the simulation method, the percentage deviations
do not lie in the interval (—5%, + 5%). Overall, these results clearly suggest
that all methods have very similar finite sample properties for the ADI
measure.

Next, we compare the performance of each method for the AIl measure. The
delta and simulation methods produce estimates that are mostly in the inter-
val of (=5%, + 5%) for both X, and X,. However, the Pierce method seems
to produce standard error estimates that are much smaller than the empirical
standard deviations, and increasing the sample size does not yield an
improvement. These results clearly show that Pierce method performs worse
than the delta and simulation methods for the AIl measure.

Turning to the ATI measure, the Pierce method again reports estimates that
are smaller than the corresponding empirical standard deviations in Tables
D1 and D2. The only occasions when the percentage deviations are in the
(—=5%, +5%) interval for the Pierce method is the Rook contiguity case
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when true A is negative and large. Similarly, increasing sample size does not
yield an improvement in the Pierce method. On the other hand, the delta and
simulation methods produce estimates that are mostly in the interval of
(—=5%, + 5%) for both X; and X>.

Next, we use the same Monte Carlo setting to investigate the finite sample size
and power properties of the standard Wald statistics for testing linear simple hypoth-
eses on the impact measures. Using a nominal size of 0.05 and different values of A,
we investigate the size properties for the null hypotheses H| : ADI = %tr(S’IBk),
Hg : ATI=17'S711,B,, and Hj : All = ATI — ADI, while the power properties for
the null hypotheses Hj : ADI = 0, Hy : ATI = 0, and H{ : AIl = 0. Note that we set
the hypothesized values to the corresponding true values in the case of H], H3, and
H3. The simulation results for the empirical size properties are reported in Tables D3
and D4 and for the empirical power properties in Tables D6 and D7. In these tables,
T,, T4, and T denote, respectively, the Wald statistic using the estimated standard
errors calculated from the corresponding Pierce, delta, and simulation methods. Our
main findings are listed in the following:

1. We start with interpreting the results on the empirical size properties of test
statistics. Considering the Wald statistics for testing H; in Tables D3 and D4,
we see that all statistics generally report empirical size values that are very
close to the nominal size value of 0.05. In particular, all statistics perform
similarly under both the rook and queen contiguity cases in general, but 7 is
moderately undersized in Queen contiguity case when A takes large nega-
tive values. These results are consistent with our results pertaining to the ADI
measure reported in Tables D1 and D2, where all methods generally produce
estimated standard errors that are very close to the corresponding empirical
standard deviations.

2. We now consider the empirical size properties of statistics for testing Hg. In
Tables D3 and D4, we see that 7}, is oversized highlighting the fact that the
estimated standard errors based on the Pierce method are smaller than the
corresponding empirical standard deviations, which we have documented in
Tables D1 and D2. The results also indicate that 7; and 7 have small size
distortions in all cases, and they outperform 7, in all cases. However, again
we see that 7 is severely undersized in Queen contiguity case when A, takes
large negative values. Overall, these findings are consistent with our results
on the ATI measure reported in Tables D1 and D2.

3. Turning to the empirical size properties of statistics for testing H;, we find
that 7}, is severely oversized confirming our results in Tables D1 and D2 on
the estimated standard errors based on the Pierce method for the AIl measure.
The results also indicate that 7,; and 7 have small size distortions in all cases.

4. Next, we consider the empirical power properties of test statistics in Tables
D6 and D7. The true values of impact measures in the alternative model are
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given in Table D5. We start with the empirical powers of statistics for testing
Hy. In general, all statistics have similar powers under both the rook and
queen contiguity cases, and power increases as the sample size increases. All
test statistics for testing Hyf report relatively lower power for the cases where
ho = 0.5 and Ay = 0.8, though the true ADI values corresponding to
ho = 0.5 and 2y = 0.8 in Table D5 are further away from the null value of
zero. This result is not surprising, since all methods produce relatively large
estimated standard errors yielding relatively lower -statistics for these cases
as shown in Tables D3 and D4.

5. Looking at the power properties of all statistics for testing H;, the results are
similar to those for Hj. As expected though, both 7, and 7, report more
power than 7 when A is large, especially when Ay = —0.8. This confirms
our findings from previous tables for the simulation method. However, this
gap in power declines as the sample size increases to 900. Again, all test
statistics report relatively lower power for the cases where Ay = 0.5 and
ho = 0.8, since all methods produce relatively large estimated standard
errors for these cases as documented in Tables D3 and D4.

6. Finally, turning to the power properties of all statistics for testing H¢, all
statistics have similar powers under both the rook and queen contiguity
cases, and the power increases as the sample size increases to n = 900.
All test statistics report relatively lower power when A is near to zero.
This is not surprising because as seen from Table D5, the true AIl values
approach to the null value when Ly tends to zero. The relatively large
estimated standard errors reported in Tables D3 and D4 for the AIl
measure for the cases where Ay = 0.5 and Xy = 0.8 also cause lower
powers for these cases.

Conclusion

In this article, we consider three methods that can be used to estimate the variance of
impact measures suggested for spatial models that have spatial dependence in the
dependent variable and, thus, allowing for reliable statistical inference on the mod-
els’ parameters. These methods include (i) the estimating equation approach (the
Pierce method), (ii) the classical delta method, and (iii) the simulation method
suggested by LeSage and Pace (2009). We provide simple expressions for the
variance of various impact measures under each method. In a Monte Carlo simula-
tion, we investigate the finite sample properties of these three methods. Our results
show that all three methods have very similar finite sample properties for the ADI
measure and they perform satisfactorily. Therefore, the Pierce and delta methods are
valid alternatives to reduce the computational burden and to overcome some of the
drawbacks of the simulation method. In the case of AIl and ATI measures, our
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simulation results indicate that the delta and simulation methods outperform the
Pierce method in all cases.’

Finally, we state the possible extensions for future research. Although we derived
the variance formulas for various impact measures in the context of a cross-sectional
SAR model, our results can easily be extended, among the others, to (i) the static and
dynamic spatial panel data models; (ii) the discrete choice models such as spatial
logit, probit, or Tobit; (iii) the matrix exponential specification suggested by LeSage
and Pace (2007); and (iv) the SAR models with endogenous weights matrices con-
sidered in Qu and Lee (2015) and Qu, Lee, and Yu (2017). We leave these extensions
for future research.

Appendix A
Proof of Proposition |

In order to apply the Pierce approach, we need to check for the three assumptions
described in the fourth section. All of our test statistics are continuously differenti-
able with respect to parameter vector. Thus, we only need to check (i) the joint
normality assumption in equation (4.1) and (ii) the assumption that E( \/nU (Y, %)
being independent of Ay. The joint normality assumption holds for all statistics by
our result in equation (2.2). For example, consider UAP'(Y,%). Then, under our
stated assumptions, the joint normality assumption is satisfied since
VRUAPH(Y hg) = Ltr(S7)/n (Bk B,) has a limiting normal distribution by equa-
tion (2.2). Here, note that 1 tr(S~") = O(1) by Assumption 2. Similarly, it easy to see
that the remaining unfeasible statistics +nrUAT(Y, Lg), rUAL(Y,)),
VrUATIT(Y 1)), and /nUATE (Y, %) have limiting normal distributions. Finally,
by constructions, all statistics satisfy the assumption that E(/nU(Y,%o)) being
independent of . Thus, in the following, we directly apply equation (4.4) to derive
the limiting distribution of impact measures.

We start with UAP!(Y, ). The variance term ¥}, = Var(/nUAP(Y, 7»0)2 is
Vip =5t (S™ NVar(y/np,). Sim le calculation shows that the gradient of
the statistic is B= ( M) Ltr(WS~?)B;. Note that Vyp =

Var(\/r_z(k — 7»0)). Then, using Plerce (1982) formula (4.4), we have

Var(ﬁUADI(Y,X)) = Vi1 —BVypB = %trz(S*l)Var(\/EBk)
i A (A1)
- n—ztrz(WS’z)B,%Var(\/ﬁ(k - xo)).

Next, we consider the average total impact measure ATI = n~'//S7'1,B,. In this
case, the variance term Vj, = Var(\/ﬁU’m(Y7 7»0)) is V= (%l;S"l,,)2
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Var(y/nf;), and the gradient term is given by B= E(% |x0> =
L1 S~'wS~'1,B,;. Then, using equation (4.4), we obtain

. 1 2 .
Var(\/ZUATI(Y,X)) :(;l;S_lln) Var(ﬁﬁk)
_ (%Z;ISIWSllan>2Var(\/;1(X — 7»0)).

Next, we turn to the AIl =1 7/S~1,8, — Ltr(S7'B,). Then, we have Vy; =
2 X
(% IS, — %tr((S’l)) Var(/nB;). The preceding calculations show that

UAL(Y, ) | 1 )
BE<M|X0> =~ LSS By — (WS 2B (A2)

Then, using the Pierce (1982) formula in equation (4.4), we obtain

Var(\/ﬁUAH(Y,X)) = (%l;Slln —%tr(Sl)) Var(y/np;)
2 (A3)

- %1;,5—1 WS 1,B, — %tr(WS‘z)Bk Var(ﬁ(x - xo)).

In the case 2of ATIT;, the variance of the unfeasible version is
Vip = (LeiS71,) Var(y/nBy). Simple calculations show that
B = %e’ :S~'WS~11,B,. Then, applying the Pierce formula yields

Var (VaUATT (v,3)) = <le’slz )ZVar(\/ﬁB )
) n i n k
(e s ) var( V(i -0)). a9

Finally, in the the case of ATIF;, the required terms are Vi =
(L1/57'e;)"Var(y/nB;) and B =11/ ST'WS~'e;B;. Then, the Pierce formula yields

var(VAUATF (1,3 ) = (%l;wei)zwr(\/ﬁﬁk)

_ <%];SI WSlein>2Var(\/i?(7l - 7»0))- (AS)
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Appendix B
Proof of Proposition 2

Using a first-order Taylor approximation and equation (2.2), it follows that

\/Lﬁ (tr(S’l(X) Bk> —tr(S’lBk)) =4 x \/ﬁ(i — o, By — Bk) +0,(1)
d N(O, Tim 4,J47),

(B1)

where 4 = [} tr(ST'GBy), 1 tr(S™")], and J is the asymptotic covariance of

N/ (71 — o, B + — By)'. Similarly, for the ATI measure, the first-order Taylor approx-
imation along with equation (2.2) gives

7 (Bkl/ (A)ln - Bkl;ls_lln) = Ay x \/%()1 - XOvﬁk Bk) +0p(1)

_d N(0, lim AJ45),

(B2)

where 4, = [L B7,S7'Gl,,11/S7'1,]. In the case of AIl measure, using a first-

nv,,n

order Taylor expansion and equation (2.2), we obtain

(s () —els ()8)) - (b —wts )

= (4y — 4)) x ﬁz(in ~ oy By — Bk), + o,,(l)iN(o,nlggo(Az —A)J (4 —Al)’).
(B3)

Next, we derive the asymptotic distributions of vector measures. Using a first-
order Taylor expansion and equation (2.2) for the ATIT; measure, we derive

1 “ ~ “ N
7 (e/,‘Sfl(k)lan - e/iSfllan) =43 % \/72(7» = o, Br — Bk) +0p(1) (B4)

d N(0, lim AsJ4}),
— n—o0

where A5 = B ¢ ,S~'GL,By, %e’ S ln] . Finally, a similar argument for the ATIF;
measure gives

(1’ {(A)ep, — l;S*Ie,-Bk) = Ay x (k= Ao, By — By) +0,(1)

_d N0, lim A4J4,),

7 (BS)

where 44 = [L IS7'Ge;py, L1757 1e].
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Appendix C
The Limiting Distribution of the Impact Measures in Spatial Durbin Models
To apply the Pierce method, we consider the following statistics of interest:

L UAPY(Y, L) =L te(S7 (M) By + L tr(S~H ()W)
—Lte(s1)By — ltr(S W)d.

2. UMy Ry =Lrs- ()sz+ 1S () WS — L 157118,
1l’S W1,0y.

3. UMY = 1S ()l — L (ST )P+ L 1S ()W,

ltr( (X WISk = (5 S LBy + 5 1,8~ Wiy

)
—Ltr(STHB, — Ler(S! W)Bk)

4. UMY, h) =1Les (X)lﬁ +1e ST M WLS, — (L €SB,
+ 157 WiL8y).

5. UMy, =118 1(71)e,[3k +lrstywed, — (L 1S e,
+%1S We,Sk)

We start with UAP'(Y,1). The variance term Vi is Vi =5 t?(S7)
Var(Vil) & (5 )Var(y/ib) + (S ir(S ) Cov(y i, by ).

) ) s UAPL(Y )
Simple calculation shows that the gradient of the statistic is B = E(— |x0)
= Lte(WS?)By + Ltr(G?)5y. Note that V2, = Var(y/n(A — k). Then, using Pierce
(1982) formula (4.4), we have
l
Var (VAUAPH(Y, 1)) = — (8™ ) Var(vay) + (5™ W) Var(v/ady)
n?

4 %tr(S’l)tr(S’l W)Cov(\/ﬁfik, NTD

— %tr(WS’Z) By + %tr(Gz)Sk Var(\/ﬁ(x — ko)).

(C1)

In the case of ATI, we have V;, = EIQS‘II,,]ZVar(\/ZBk) + [%ZZS‘lWl,,]z

Var(y/ndy) +2[L 1571, ] [L1,S7 W1, ]| Cov(y/nBy, /ndy), and the gradient term is

givenby B = ]E,(UATI (r,2) |}\0> =10 ST '"WS~'1,B; + L1/, G*1,8. Then, using equation
(4.4), we obtain
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2 2
Var(ﬁUATI(Y,X)) = {%IQS_II,,} Var(y/nfy) + [%I,QS_IWZ,,] Var(y/nd)

1 1 . .
+2 {; l;,S‘ll,,} {; rs! Wl,,} Cov(\/nPy, /ndy)

1 1 .
- [—lﬁ,sl wS~'1,B, +—l;Gzln6k} Var(\/ﬁ(x - xo)).
n n
(C2)
In the case of All, we have
2
Vi = [ﬁl;slwn —%tr(sl@nl Var(y/fy)

2

+ [% 1S (W, — %tr(S"l Gym)| Var(yasy)

+2 ili,sl(mn—itr(sl(i))] %I;S*I(X)Wzn—%tr(S*l(X)W) Cov(y/nde, v/nfy),

(C3)

and

UAH
s—u(YM Y Ly, — Lagws )| g+ Pratn - te@d)]s. (€4
oL w0 n n n n

Then, substituting equations (C3) and (C4) into equation (4.4), we will obtain the
asymptotic variance:

2
Var (VRUAI(Y ) = rlll;S](i)l,,:ltr(S](X)):| Var(y/i,)

1

2
+ nl;Sl(X)Wl,,rlltr(Sl(X)W)} Var(\/isy)

12 {}11 1S (), - %tr(Sl(X))} [% 1S Gy, — %tr(S’l(i)W) Cov(V/iibro/aBy)

2
_ ( |:%1)/1S1 ws1, — %tr(WS’Z) 6k> Var(\/ﬁ(x - 7»0)).

1 1
—I'G*l, — —tr(G?
By + [n n . r(G”)

(C5)
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In the case of ATIT,;, the variance of the unfeasible version is
Viv = [b e iSTI )L Var(yaBy) + [Le/iS~ (M)W Var(y/ndy) +2[L €S~ (R)1,]
[Le/,S~ (k) WL, )Cov(y/nBy, /ndr). Simple calculations show that B =1
e ST WS, By + Le/; ST WS~ W1,8;. Then, applying the Pierce formula in equa-
tion (4.4) yields

2 2
Var(\/ﬁUAT‘TI(Y,i)) = [ie'isl(i)zn] Var(y/nfy) + [rlle',-sl(i)wz,,] Var(y/n8y)

+2 Cov(y/nPy, v/ndy)

1 ro—1% 1 ro—1%
ne,S (k)l,,] {ne,S (M)W,

2
1 1 )
- [e',-slws'lnﬁk +e’,—S1WS1Wl,,8k] m(ﬁ(x - xo)).
n n

(C6)
.72
Finally, in the the case of ATIF ;, the required terms are ¥, = [% l;S’l(X)el}
N . 2 . R R
Var(v/ap,) + [5 z;,s—l(x)We,} Var(y/d) + 2 B z;,s—l(x)e,} [% s (X)We,} Cov

P , nAk an =-0'S" e, +-0UST ~'We;6;. Then, the Pierce
Bi,v/ndr) and B =11 S7'WwS~tep, + 11 ST WS~ We;d;. Then, the P
formula in equation (4.4) yields

2

2
Var(\/ﬁUATIFf(Y,X)) = |:%ILS1(X)e,} Var(/nf,) + [%IQSI(X)WeI-] Var(,/nd;)

+2 E l;Sl(X)ei] {% IS~ () We; | Cov(v/aPy, v/ndy)

1 1 )
- {—I;S‘IWS‘Ie[Bk +—1;S—1WS—1We,6k] Var(ﬁ(x - xo)).
n n

(€7)

Next, we determine the asymptotic distributions of statistics by using the delta

method. For the ADI measure, using a first-order Taylor approximation and equation
(2.2), it can be shown that

% (tr(S’l (W) + (ST )W)y — tr(S™) By — tr(S! W)5k> )
Cs8
= A1 V(= o, By = By 8k = 8) +0,(1)_d N(0, lim A1J4}),
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where 4 = [L tr(ST'GBy) + 1 tr(G?), L tr(S71), Ltr(ST'W)], and J is the asymp-

totic covariance of \/ﬁ(i — ho, ﬁk — By, 5p — 8¢)'. In the case of ATI measure, the
first-order Taylor approximation and equation (2.2) gives

1

f . A 1
I'S~' (M1, I'S'OYwLs, — IS 'L.B, —~1I'S™' WL,
\/ﬁ (nS ( ) Bk+ nS ( )W k nS Bk n nS k)

(€9)
=4 X \/EOA\' — o, Bk = Br Sk - 616), + 017(1) i)N(Ov nhHOlOAZJA,Z)v
where 4, = [ §,2/.87'Gl, +1 I/ G*1,8¢,1 1,871, 11/ S7'W1,]. In the case of Al
measure, the first-order Taylor expansion along with equation (2.2) yields
L 1 o—109 o —1/4 P /a1 /R _ 15 ~
7 ([lnS (M)lw = (ST (M)IBy + [L,S™ M)Wy — tr(S™ (M) W)] 0k

- (1;5711,1 By -+ IS~ W18, — tr(S~)B, — te(S~ )3, )
= (A2 — A1) X /(M — Do, By — Bio 8 — 84) +0,(1) d N(

e n—00

0, lim (4s — 4,)J (45 — Al)’).

(C10)
The first-order Taylor expansion for the ATIT; measure gives
1 oA . .
— (e',-S’l (MLB + €S~ M) WL,o, — (¢:87'1,B, + ¢/ Wln6k))
va (C11)

= A3 x \/a(h — Mo, By — B, 0k — 84) + 0,(1)— dN(0,1im,, o, A3JA}),

where A3 = [} ¢ :.S7'GL,B; +1 €;G*l,, L €571, Le/.STI W, |. Finally, in the
case of ATIF;, we have

1 .. . R
- (1/ ST R)epy + 1.5~ (M) Wedy — (IS ey + 1.5~ We,»Sk)>
\/ﬁ n n n n

(C12)
= Ay % /a(h — 0o, By — By 0k — 8%) + 0p(1) d—s N(0, lim,, . A4JA,),

where A4 = [L IS Geip, +1 1) GPe;S, L 1S e, LI ST Wey].



"POYIBW UOHEINWIS BY) UO PIseq JOJJd pJepuels pajewIss =
"WIS ‘pOYIBW BIIP dYI UO PAse] JO.LID PJBPUEBIS PAIBWIISD = '[9(] ‘POYIDW 323l DY) UO Paseq JO.LIS PIEPUBIS PAIBWIISD = "Jdld ‘UOIIEIASP pJepuels [edliidws = ‘dwg 210N

0Ib'1 S9E1 LTI SOV L8I'1 ¥SI'I 890l 681°1 001°'1 SSO'1 6£60 680°'I 0£6'0 £68°0 080 9760 £IE €IE TLE 8IE VLT ELT VLT 8LT &
967°0 162°0 ¥9T0 €670 8YT'0 SHYT'0 0TTO SHTO 091°0 SSI°0 8600 9510 8E1'0 PEI'0 9€0°0 TEI'0 8¥I° 8¥I° 81" 6v1° 9TI° 9TZI° 9TI° [TI° &

9Z1°0 SZTI'0 0110 8TI'0 901°0 SOI'0 1600 +01'0 6¢0°0 L¥O'O 0000 800 900 S¥O'0 0000 ¥H0'0 L60" L60" L60" 860° £80° €£80° €80° 780" T

£80°0 £80°0 [/00 €80°0 690°0 690°0 6500 000 TEO'0 TEO'0 0000 TEOD ZEO'O TEO'0 0000 TEO0 6LO° 6L0° 6L0° 6/0° 890" 890" 890" 690° O

6500 850°0 0500 8500 6¥0°0 6¥0°0 1¥00 8+0'0 8700 8Z0'0 0000 /TO0 8700 8T0'0 0000 LIO0 L90° L90' L90" 890" LSO" LSO' LSO’ LSO T—

8€0°0 8€0°0 TE0'0 8€00 1€0°0 1€0°0 9700 TEOO LZO'0 LTO'O SO00 LTO'0 LTOO LTO'0 0000 LTOO SSO° SSO° ¥SO° SSO' 80" 80" LKO 80" §—

9€0°0 920°0 TTO0 9200 ¥EO'0 1TO0 8100 1TO0 LEOD 8T0°0 9100 8Z00 9€00 LTOO 1100 LTOO L¥O LVO' 9¥0" 8Y0' TVO' 1¥0° 6£0° 140 8— 006 =U
18T°T 911'T 6£61 I€TT L8l OTL| OLS| LEQ1 €6L1 SIV| L6€1 TEL| 65Vl LIE] STyl 81§ 91§ SIS WS T 1TV 1TV L€y &

9LP'0 T9Y'0 OTHO E€L4'0 88E'0 9LE'D SEEO HBEO 09T'0 1¥T0 LS1'0 TSTO 81T'0 €0T°0 8070 8ET" 8ET' 8EL OVT S61° V61' S61° L61 §

€07°0 661°0 910 10T0 S91°0 191°0 O¥I'0 €910 8L0°0 TLO'0 0000 SL00 1L0°0 L90°0 0000 6900 SSI° SSI° SSI° SSI° 8TI° 8TI' 8TI' [II' T

€€1°0 1€1°0 SII'0 9€1°0 801°0 LOI'O 1600 9010 0S0°0 LFO'0 0000 6+00 6¥0°0 LFO'O 0000 8+00 LTI® LZI® 9TI° 6ZI° ¥OI° ¥OI' ¥OI° ¥OI° O

¥60°0 €60°0 1800 ¥60°0 9L0°0 SLO'0 900 900 ¥¥0'0 T¥0'O 0000 THO'0 €400 THO'0 0000 THO'0 LOI' LOI® LOI® LOI' 680" 680° 880" 680" T'—

190°0 090°0 [S00 0900 6400 8¥0°0 1400 6+00 €0°0 €/0°0 0000 €400 1¥0°0 1¥0°0 0000 |+0°0 880" 880" L8O 880" €L0° €L0° TLO® SLO §'—

7600 1¥0°0 SE00 1¥00 1600 €££0°0 8T00 €€00 T60°0 €¥0°0 LT00 €400 0600 1¥0°0 LI00 OO0 890" SLO' PLO" ¥/0° 890 €90° 190" €90° 8~ 00y =u U3ND
9671 99T1 v61°'l 8LT| £66'0 1L60 060 1660 ¥86'0 $S6'0 S980 S960 8SL0 9EL'0 ¥¥90 ISL0 1TE 1TE OTE TIE 9vT 9vT LWL IST &

987°0 ¥8T'0 9970 €8T0 61T°0 LIT'0 00TO SITO SPI'0 T¥I'0 9010 THI'0 Y110 TII'0 0L00 1110 6¥1° 61" 61" 8¥1° SII° SII° SII° ¥II° &

STI'0 ¥TI'0 9110 £TI'0 S60°0 S60°0 /800 L600 6£0°0 6£0°0 0000 6£00 SE0°0 YEO'0 0000 SEO0 860" 860" 660° 001" 9L0° 9LO' LLO' LLO T

€80°0 £80°0 £/00 7800 £90°0 £90°0 8500 €900 £0°0 £Z0°0 0000 €T00 £Z0°0 £Z0°0 0000 €C0°0 080" 080" 080 6/0° £90° £90° €90° €90 O

850°0 850°0 SO0 6500 P¥0'0 ¥H0O'O I400 SHO'O TTO'O TTO'O 0000 TTO0 1Z0°0 1ZO'0 0000 1TO0 890" 890" 890" 0L0° £S0° €£50° £50° +SO° T—

S€0°0 SE0°0 €E00 SEO'0 900 9TO'0 STO'O 9200 STO'0 STO'0 SI00 STOO €T0°0 €20°0 L000 TLOO SSO° SSO° ¥SO 9S0° ¥¥O bhO' THO' €40 §—

610°0 610°0 610°0 0700 S10°0 SI0°0 ¥I0°0 SI00 0£0°0 0£0°0 8100 O0E00 LZO'O LZO® 6000 LIOO 9¥0° S¥O" THO' 9v0' 8EO" 8EO" I€E0° 8EQ" 8~ 006 =U
pT8' 1 VEL'l 6091 ¥SL1 ELEl 901 T6I'| 6VEl L6E|I L6T'l OvI'l 9TE| €50'1 €86'0 6180 IT0°1 bbb 8bY' Lbb" Shy ObE 6£E° OFE 9vE 8§

90b°0 86€°0 99€0 TOV'0 POE'0 86T°0 TLTO 8OE0 I11T°0 10T°0 8EI'0 €0TO T91°0 SSI°0 8800 0910 01T 01T 01T TIT 091° 091" 191° +91° &

8L1°0 LLI'0 T91'0 0810 £€1°0 TEI'0 0TI'0 TEI'0 650°0 9S0°0 0000 6500 TSO'0 0SO'0 0000 0S00 6E1° 6E1° 6EI° OvI° LOI® 901" LOI° 901" T

811°0 L11°0 8010 811°0 880°0 L80°0 0800 880°0 9£0°0 $E0°0 0000 »EO'0 SE0'0 ¥EO'0 0000 ¥EO0 vIl* 11" ¥11° SII° 880" 880" 880 880" O

780°0 T80°0 900 ¥80°0 190°0 190°0 9S00 900 €€0°0 TEO'O 0000 CTEO0 TEO'0 TEO'0 0000 €00 L60" L60° 960° 660° SLO" SLO' ¥LO® 9L0° T—

0S0°0 0S0°0 9¥00 0500 LEO'0 LEOD'O SEO'0 LEOO LEO'O LEOD'O 0C00 9€00 YEO'0 HEO'0 SO00 YEO'D 8LO' 8LO™ LLO® 6L0° T90° T90' 6S0° €90° §'—

LT0°0 LT0°0 9T0°0 8Z0'0 0Z0°0 0Z0°0 0ZO'0 I1Z00 ¥¥0'0 £/0°0 £20°0 IHO'O 000 6£0°0 ¥00'0 0¥0'0 S90° S90° 850" 90" ¥SO" ¥SO" ZrO' ¥SO" 8'— OOy =Uu >00Y
wg o pg ed dwy cwis cpg wRd dwy wis p@ WRld dw3 cwig pg deld dw3 cwig p@ WRld dwg cwis @ deid dwig 0y

% X % X % X
|eao| 133Jipu] 1=41g

"9S8D) [BWLION :S40.13 pJepuelg paiewns]y pue [edunidwy * 1@ o|qelL

S)Nsay uonbjnwis
a xipuaddy

26


osman.dogan
Highlight
These should not be in bold.


osman.dogan
Highlight
These should not be in bold.

osman.dogan
Highlight
These should not be in bold.

osman.dogan
Highlight
These should not be in bold.

osman.dogan
Highlight
These should not be in bold.

osman.dogan
Highlight
This should not be in bold.

osman.dogan
Highlight
Remove bold face.


‘POYISW UONE|NWIS BY3 UO pIseq OIS PJEPUBIS PIIBWISD =
‘WIS ‘POYIBW BISP B2 UO Paseq 0.3 PJepuels palewss = ‘|9 ‘POYIaW 82431 dYI UO paseq I0.LId PIEpPULIS PAIBWINSD = "Jdld ‘UONEIASP pJepuels [edliidwa = "dwig 20N

P6E'l €SET1 SIT| ¥8E1 6LITl PI'l 6501 T6I'l L8O'I THO'l 8760 101 TT6'0 T88'0 TLLO 9760 TTE 1TE 1TE SIE €LT TLT TLT 08T §
S6T'0 16T°0 €970 6870 8HT'0 SPTO 61T0 L¥TO 191°0 SSI°0 8600 ¥S1'0 8E1°0 €E£1°0 TLOO ¥EI'0 LvI® LvI® Lb1° Z¥1' STI® STI® 9T1° LTI §
9Z1°0 STI'0 0110 8TI'0 9010 SOI'0 1600 9010 6#0°0 LFO'0 0000 800 9¥0°0 S0'0 0000 SO0 960° 960° 960" 860° I80" I80' 80" T8O T’
£80°0 £80°0 [/00 T80'0 690°0 6900 6500 0/00 ZEO'0 I1€0°0 0000 ZE0'0 TEO'0 TE0°0 0000 TEO0 6L0° 8LO" 8LO" 8L0° L9O" L9O' L9O' 890 O
650°0 850°0 0500 8500 6v0°0 6V0°0 (400 0S0'0 8Z0'0 8Z00 0000 /ZO'0 8T0°0 8Z0'0 0000 8200 990° 990° 990" 990° LSO' LSO' LSO" 650" T'—
8£0°0 8£0°0 00 LE00 1€0°0 1€0°0 9200 TEO'0 LZO'O LZO0 SO0'0 /Z0'0 LTO'0 LTO'0 0000 ZI00 SSO° SSO° ¥SO" SSO' LVO' LVO' 9¥0° 8YO' §—
££0'0 920°0 TT0'0 9700 0£00 1ZO'0 8100 TLOO +EO'0 8O0 9100 8Z00 ££00 LTO'O 1100 LTO0 8¥0" LbO" 90 840 TVO' 1¥0° 6€0° THO' 8'— 006 =U
SLTT VII'T $S6'1 €1TT 8S8'1 VIL1 95| L641 €6L1 6191 ¥I¥'| 60L1 69%'| 1T 16€°1 SIS" €1§° TIS' ¥IS 0T 8Ib° 61F° 61 §
£LV'0 65P°0 9140 ¥9H0 S8E0 ELE0 EEE0 €860 8STO 6ET0 SSI'0 SHTO PIT'O 661°0 0000 6070 9€T° 9€T° 9ET 8ET b6I° €61° 61" 961" §
10°0 L61°0 SZI'0 £0T0 €91°0 0910 6£1°0 1910 LLO'O 1£0°0 9T00 SZ0'0 1L0°0 L90°0 0000 £900 ¥SI' bSI° bSI° LSI" LTI® 9TI° LTI 61I' T
€E1°0 1€1°0 #11°0 ¥€1'0 L01°0 9010 1600 9010 0S0°0 LF0'0 0000 8Y0'0 6¥0°0 LF0'0 0000 8+00 9TI° 9ZI° 9ZI° LTI ¥OI° ¥OI° ¥OI° SOI' O
$60°0 £60°0 0800 ¥600 9L0°0 SLO'0 €900 S/00 ¥0'0 THO'0 0000 THO'0 £/0°0 THO'0 0000 THO'0 901° 901° 901° LOI' 880" 880" 880" 880" T—
190°0 090°0 1500 1900 6+0°0 8v0'0 0¥00 6400 £40°0 THO'0 6000 THO'0 1¥0°0 1¥0°0 0000 400 L8O' L8O L8O 680 €L0° €L0° 1LO° +/0° §—
££00 1¥0°0 SE£00 THO0 1/0°0 ££0°0 8T00 €£00 /00 £40°0 £T00 €500 100 1¥0°0 L100 [¥00 0L0° SLO" VLO" 9/0° 690° £90° 090° #90° §— 00y = U usend
L6T'1 OLT'1 6611 89T| £66'0 £L6'0 9060 8/6°0 886'0 6560 8980 0960 6SL°0 8EL'0 6¥90 I¥L0 OIE 61€ 61€ 8IE YT SYT 9vT 8HT &
S8T°0 ¥8T'0 S9TO 08TO 61T°0 LITO 00T0 6170 9¥I'0 €41°0 9010 010 110 TINI'0 0L00 €110 6¥1° 6v1° 6F1° 8YI SII° SII° SII° 911" §
STI'0 PTI'0 9110 9TI'0 S60°0 S60°0 800 S600 6£0°0 6£0°0 1100 6£00 SE0°0 VEO'O 0000 ¥EO'0 860° 860" 860" 660° 9L0° 9L0° 9LO" 9L0° T
£80°0 780°0 Z/00 ¥80°0 £90°0 £90°0 8500 S900 £20°0 £Z0°0 0000 £200 £Z0°0 £T0°0 0000 TTO0 080" 080" 080 T8O 90" Z90° Z90° S90° O
850°0 LS0'0 SO0 8500 P¥O'0 ¥HO'0 400 ¥¥0'0 TTO'O TTO'0 0000 1Z00 1T0°0 1Z0°0 0000 200 890" 890" 890" L90 €S0° €SO° €50° £S0° T—
SE0'0 SE0°0 ££0'0 SEO'0 9Z0'0 9Z0'0 STOO 900 STO'0 STO'O SIO0 STO0 €Z0'0 €Z0°0 L000 £T00 SSO° SSO° ¥SO° SSO° bbO' €£40° THO' ¥H0' §'—
610°0 610°0 610°0 6100 S10°0 SI0°0 ¥I0°0 SI00 0£0°0 0£0°0 8100 O£00 LTO'0 LZO'0 8000 ZI00 SYO' SPO" 1¥0° SHO' 8E0" LEO' I€0° ZEO' 8'— 006 =
6781 9EL°1 6651 8941 OLE'l 90E'1 061'1 ObEl L6E1 TOL| OEI'l 9E€°1 TSO'I €86°0 SISO SIO'| 9vb" Shy" bbb éby 8EE" LEE 8EE +hE &
90b°0 L6E0 SIE0 66E0 POLO L6T'0 (/70 10£0 01Z'0 00Z'0 8E1'0 1070 Z91°0 SSI°0 £80°0 9510 60T° 60T 60T 11T 6SI° 6SI° 091° I91° §
8L1°0 9L1°0 1910 0810 €€1°0 I€1°0 0TI'0 1€1°0 090°0 LS00 8100 /SO0 TSO'0 0S0°0 0000 6+00 8€I° 8EI° 8EI° I¥I° 901° 901° 901" SOI' T
L11°0 911°0 £OI'0 Z11'0 L80'0 L80'0 600 [80°0 9£0°0 €00 0000 $E0'0 SE00 ¥E0°0 0000 ££00 E£11° €11° €11° €11 L80" L8O' L8O /80 O
780°0 780°0 900 7800 1900 190°0 9500 £90°0 ££0°0 TE0'0 0000 TEO'0 TEO'O TEO'0 0000 TEO0 960° 960° 960° 960 SLO' SLO* ¥LO" 9L0° T—
6v0°0 6¥0°0 900 0S00 LEO'0 LEO'0 SEO0 LE0'0 LEO'0 LEO'0 0T00 9£0°0 VEO'O YE0°0 0000 ¥EO'0 8LO° 8LO" 9LO° 8L0° T90" 190° 8SO' 790 §'—
LT0°0 LT0°0 9T0°0 STO0 0Z0'0 0Z0'0 0Z0°0 0T00 £40°0 £40°0 £200 THO'0 OF0'0 6£0°0 H000 6£00 S90° $90° 8SO' ¥90' bSO' €S0° THO' £S0° §'— 00y =U ooy
ws  pg  weld dw3 cwis pQ Weld dwy wis pg Wed dwy wis e deld dwl cwis p@ Wl dwl wis @ weld dwg Oy

% 5% % 5% 1% 0%

_Son_n uum.___u_.__ uuw.,__o

'9s8D) [BW.IOUUON :SJ0.43 pJepuelg pajewnsy pue [edolidwy *zg d|qel

~
(o]



(panunuoo)

870° THO' 080° OKO' ZSO' €01° LT0° €HO° SOI° 6E0° 6S0° €EI° €S0° TSO' €S0° €90° +90° 90" &
9v0" TSO' S80° LKO' SSO° 160" ¥90° ¥80" 99T L90° S80° LEE +SO° SSO° SSO° €S0° TSO' 0SOT §

6v0° SSO° €60° 1SO° 950" €0I° ¥60° SII° ObT 080" 960° 8SI° 1SO° 6¥0° 6K0° 0SO° 1SO° 0SO° T

¥SO" £SO° TOI° 6V0° 1SO° 960° 8TO° +EO' €0I° E€0° 8EO° 980" 8S0' 8S0° 8S0° SO TS0 TSO O

050" TSO' T60° LbO' 1SO° 660" SEO° THO' SIT 8E0° SHOT S9I° €S0° ¥SO° #SOT 8YO' 6O 0SO° T—

1¥0° 8v0' S60° €40' TSO° II1° ¥bO' SSO° 60b° 8EO° €SO° L8 80" 0SO° TSO' 0SO° TSO° £SOT §—

600" 9¥0" 060" L00° LvO' 860" LIO® 8¥0' 1ST 0T0° 80 SE€¥ 910" 9%0' TSO €10° LyO' SSO° 8— 00p =u UIdND
9v0" 6¥0" 0L0° LKO 1SO° LLO' SKO' 6bO° €80° 9¥0' €SO° €0I° €SO° TSO' €SO° TSOT TSO' 1SO° 8

€/0° 9v0' 890" ¥KO LbO' 0L0° 0SO° ¥SO° S9I° 850" T90° SKT 8vO' LbO' LKO 8YO' 9¥O' SHO' §

050" 1S0° TLO° €SO° 9S0° 8/0° S90° 0L0° 10€ €90° £90° S9I° €S0° TSO° TSO' SSO° SO #SO° T

9v0° 9¥0" 890" ISO° TSO' 1L0° 9€0° 6€0° £90° 1¥0° €O 190° 8Y0' LPO' LKO' TSO' TSO' TSO' O

€50° ¥SO° €0° ¥SO° SSO° 9L0° ¥SO' 8S0° 18T 8¥0' 80 81 TSO' TSO' TSO' 0SO° 0SO° TS0 T—

[SO° 8S0° TLO' SKO' 9¥0' T90° SO SSO° €LT €O HHOT 95 9SO0° 9S0° 6S0° bHO' €40 TSOT §—

050" 1S0° 8S0° 6v0° 6¥0° 8S0° 950° 8S0° THYT €SO 950" T¥S 6¥O° 0SO° 9L0° 8¥0' 1SO° €11° §— 006 =U

LEO" LVO' €L0° LbO' LSO' ¥60° 6€0° SSO° 101" #KO° 090" 8TI' 6¥0° 1S0° 1SO° SSO° 9SO0° SSO° &

bbO" 860 LL0° 950" 190° 980" €SO° 90" 0TT S90° ¥L0° I€E 0SO° 0SO° 0SO° 950" 9S0° #SO° §

8v0' 050" €L0° 0SO° €SO° 6L0° 6L0° T60° L6T TLO T80 991 1SO° TSO' TSO° 6v0° 6v0° 8Y0' T

6v0° €50° TLO 6¥0° TSO' LLO' 6T0° SEO° 80" 8EO' THO' 1L0° 1SO° ¥SO° $SO° 0SO° TSO' €SO° O

750° ¥S0° 9/0° SSO° SSO° €£0° 0SO° SO 18T €40 9¥0' 681" LSO' LSO' 8S0° 1SO° 0SO° TS0 T—

§S0° $SO° bLO0' €S0° TSOT 890" €SO0° SSO° SIE ¥SOT 9S0° 08S €S0° ¥SO' LSO SSO° SSOT 690" §—

9v0° 9¥0" SSO° ISO° 0SO° 090" [KO' 6¥0° 88T 6¥O0° $SO° 00L 9vO' 8KO' TLO® 9¥0° 6¥0° TEIT 8— 00y =U ooy
S T R A A T R A T A A AT A A AR R R AR R

5% I 5% Ix 5% Ix
|e1o] 19341pUy| 2.1Qg

*3seD) [BWLION| :S21ISIBIS PIBAA JO 9zIS [eoliidwy *gq @|qel

28



0v0' 8Y0' 8L0° €40 6v0° 6L0° O¥O' 8vO' 960° vFO' TSO' 901" SSO° 9SO° LSO' SSO° SO SO 8
YO 6V0° SLO° 9¥0 6¥0' T80 8S0° L90° 0ST 1SO° LSO €EE€° ISO° 80 8YO' 150" 0SO° 6¥0° §

€50° SS0° T60' 8YO' 0SO° 060" 690" 6/0° 81" 6S0° S90° vl 9S0° SSO° SSO° L¥O' LbO' IO T

90" LbO' T60" SO €S0° 660° 8E0' SHO' €L0° €40 LbO' 890" 9¥0 8YO' 8Y0' SSO SO SO O

0SO° TSO' £60° 0SO° 0SO" £60° SKO' 8YO' 91" THO' +HO' ITI° 9S0° SSO° SSO° 80 K0 6v0° T—

750 #S0° 001" +SO° SSO° 601" 1SO° TSO' SIS 8¥0' 8vO' 61§ TSO €SO° #SO' 1SO° 1SO° £SOT §—

SZ0° 850 €0I° 610" 7SO TOI° TEO' ¥SO° 9T STO 8YO' SSH 9¥0' LSO' T90° 8E0T 0SO° T90° 8— 006 =U
S g Pp sy Y s kg s e s pp A s e oy

5% I 5% Ix 15 Ix
|ero | 103.41pu| 02U

(penunuod) ‘@ a|qeL

29



(panunuod)

0€0° S¥0° 980" +€O° 0SO° 060° 0€0° L¥O° III° #E€O0° TSO° €CI° TSO° €SO0° +90° +SO° €90 €SO
¥¥0" TSO° T80 L¥O" 990" ¥#60° S90° [80° T9T 1L0° 880" 6€E” TSO° 0S0° 090" SSO° §S0° SSO°
6¥0" €S0° €60° L¥O" 1S0° C60° 980" LOI° LTT 8.0 S60° 091" 840" 8¥0° 840" 090" [SO° 0S0°
1S0° 990" £60° 8¥0° 0SO° L60° 920" ¢CE€0° 001" #€0° L€O° 980" 1S0° 0SO° 0S0° 0SO° 0S0° 0SO°
8¥0" 6¥0° 960" L¥O" 6¥0° 660" Ov0° 9%0° 80T 6£0° ¥¥O° T9I° L¥O" VO™ L¥O" 9¥0° 9¥0° 8¥0° T—

S¥0° #S0° <¢OI° L¥O° €SO° LOI° THO" 0SO° LTV 6£0° TSO° ¥V 15907 €S0° +SO° 60" 1907 9S0° S9'—

600" $SO° £60° LOO" 6¥0° 001" LIO° €SO 6¥T €T0° 0SO° E€¥¥ LIO0 SSO° 6SO° 910" 0SO° €90° 8— O00F =u usdNd
S¥0" 1S0° 1£0° 8¥0° TSO° €£0° S¥O° TSO° #80° 9¥0° €SO° L60° 80" 0S0° 0SO° #S0° 9SO° SSO° &

¥¥0° 9%0° 990" CS0° ¥SO° SZ0° S¥O° 0SO0° TSIT €S0° 8SO0° Z¥T 9¥0° S¥O° S¥O° +¥SO° #SO° TSO° S

1S0° TSO° ¥#£0° €0° SPO° 690" £90° €L0° L6C 190" +90° 191" SSO0° #SO° +S0° L¥O" 8¥0° L¥O' T

80" 6+0° 890" 990° 9SO° 6/0° 0€0° ¢CEO S90° +€O° SE€O° 0SO° #S0° €S0° €S0° 9907 SSO° SS90 O

6¥0" TSO° £90° £SO° 9S0° #£0° 0S0° €SO° 69T 190" ¢SO €8I° 6¥0° L¥O° 60" €S0° +#SO° 9907 T—

1S0° 6¥0° 990" TSO° TSO° 890" 0S0° 0S0° 6/C° SSO° 9907 999° 0S0° 80" <CSO° TSO° €S0° 9907 S —

90" S¥0° €90° €S0° CSO° 090" 6¥0° 150" 6¥T 150" €90° 6€S° 8¥0° 6¥0° TLO° 60" 050" 60I° 8— 006 =U

I¥0° €90° S80° 0S0° 090" 680" TFO" SSO° £OI° 1S0° 990" O€l” 190" €SO° €90° +SO° #S0° €S0° 8

L¥0" 190" £L0° 9¥0° TSO° 080 150" 190° €IC 890" /90" 61€ 090" 0SO° 090" ¢CSO° €907 €S0° S

€90° 950" €80° 6¥0° 190" GZ0° 6L0° 160" 64T 1L0° 8L0° ¥SI° 950" SSO° SSO° 90" L¥O° 9¥0° T

80" 6+0° €/0° 6¥0° TSO° C/L0° TTO° 8CO° CTLO° 0€0° S€O° 6SO° #¥O° +v¥O° #¥O° 090" 0SO° 190" O

6¥0" 8+0° 1L0° SSO° 990" 9/0° 8¥0° €S0° SLT €40 940 681" 090 6¥0° 6¥0° €90° CSO° SSO° T—

1S0° 0S0° 0£0° TSO° 1SO° 990" /[¥O° 0S0° 9C€ 1S0° €90° 069" 090" [1S0° #SO° TSO° €S0° €90° S —

8¥0" 6+0° 090" L¥O" 9¥0° €S0° 9¥0° 0SO° 66T 8F0' €S0 L9 #¥O° 9¥0° 9/0° €+0° 9%0° +CI° 8— 00K =U 300y

QS

S g Pp sy Y s pp s e s pp A s e oy

[5°¢ ¢ [5°¢ X [5°¢ X

[e20] 22941pu| 12.41Q

"9SBD) [BUWLIOUUON :SJ1ISIEBIS PleAA JO 3zIS [edriidwy *p g 3|qel
o
o



9v0" TSO' 8/0° 0SO° 950" 180" 9¥0' TSO' 860" 0SO° 190" 601" SSO° SSO° SSO° 9S0° 9S0° 950" §
6v0° TSO' 080" 8Y0' 6v0° 080 LSO S90° 0ST SSO° €90° LEE 0SO° 8Y0' 8Y0' TSSO 1SO° 0SO° §
€50° 950 60" LbO' 6¥0° S60° SLO' ¥80° 681" 090" £90° LIl SSO' SSO° SSO° 8¥0' 8vO' 80 T
80 6v0° 880" 1SO° €S0° 001" 9¥0' €SO° L0 6¥0° €SO° €/0° 80 8YO' 8Y0' SSO° SSO° SSO° O
8Y0' 6v0° Y60 6V0° 0SO° ¥OI' 6£0° THO' 6kI° 9¥0' LbO' EEI° 6¥0° 6V0° 6KO° YSOT 9SO° LSOT T—
9%0" 9¥0' 860" €SO0° 950" TII' SO $SO' SES 0SO° 0SO° 9TS 0SO° 1SO° TSO° SO €SO° 6507 §—
0 $SO° 101" 1Z0° €50° TOI' +EO° 9S0° 6T 1€0° #SO° S9% LVO $SO' 6SO° THO' SSO° 990° 8— 006 =U
S g Pp sy Y s hp s s pp A s e 4 oy
5% I 5% Ix 5% Ix
|ero | 103.J1puy| 241Q

(penunuod) pq 31qeL

31



32

International Regional Science Review XX(X)

Table D5. True Effects Values.

ADI All ATI

Xo X X3 X X3 X X3
Rook n = 400 -8 .642 —.642 —0.364 0.364 0.278 —0.278
-5 .538 —.538 —0.205 0.205 0.333 —0.333
-2 .505 —.505 —0.089 0.089 0417 —0.417
.0 .500 —.500 0.000 0.000 0.500 —0.500
2 .505 —.505 0.120 —0.120 0.625 —0.625
.5 .538 —.538 0.462 —0.462 1.000 —1.000
.8 .642 —.642 1.858 —1.858 2.500 —2.500
n =900 -8 .639 —.639 —0.362 0.362 0.278 —0.278
-5 .537 —.537 —0.204 0.204 0.333 —0.333
-2 .505 —.505 —0.089 0.089 0417 —0417
.0 .500 —.500 0.000 0.000 0.500 —0.500
2 .505 —.505 0.120 —0.120 0.625 —0.625
.5 .537 —.537 0.463 —0.463 1.000 —1.000
.8 .639 —.639 1.861 —1.861 2.500 —2.500
Queen n = 400 -8 .537 —.537 —0.260 0.260 0.278 —0.278
-5 515 —.515 —0.181 0.181 0.333 —0.333
-2 .502 —.502 —0.086 0.086 0417 —0417
.0 .500 —.500 0.000 0.000 0.500 —0.500
2 .503 —.503 0.122 —0.122 0.625 —0.625
.5 522 —.522 0.478 —0.478 1.000 —1.000
.8 .590 —.590 1.910 —-1.910 2.500 —2.500
n =900 -8 .537 —.537 —0.259 0.259 0.278 —0.278
-5 514 —-.514 —0.181 0.181 0.333 —0.333
-2 .502 —.502 —0.086 0.086 0417 —0417
.0 .500 —.500 0.000 0.000 0.500 —0.500
2 .503 —.503 0.122 —0.122 0.625 —0.625
.5 522 —.522 0.478 —0.478 1.000 —1.000
.8 .588 —.588 1.912 —1.912 2.500 —2.500

Note: ADI = Average Direct Impact; All = Average Indirect Impact; ATl = Average Total Impact.
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Notes

1. For parameter spaces suggested for Ay, see Anselin (1988), LeSage and Pace (2009),
Kelejian and Prucha (2010), and Elhorst, Lacombe, and Piras (2012).

2. The consistency of all plug-in estimators in this section can be established by using Liu,
Lee, and Bollinger (2010; lemma D.11).

3. We do not consider the Bayesian approach suggested by LeSage and Pace (2009) as our
focus is on the classical approach.

4. The percentage deviation is calculated by 100 x (estimated standard error — empirical
standard deviation)/empirical standard deviation.

5. A function written in Matlab is available at https://sites.google.com/site/gcsuleymantaspinar/
home/software. The function returns impact measure estimates and their standard errors.
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