Bevacizumab, a VEGF-targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t-test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t-test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over-expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient-derived glioma stem-like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab-treated rats. Our study indicates that bevacizumab-induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells.

Falchetti, M. L., D'Alessandris, Q. G., Pacioni, S., Buccarelli, M., Morgante, L., Giannetti, S., Lulli, V., Martini, M., Larocca, L. M., Vakana, E., Stancato, L., Ricci-Vitiani, L., Pallini, R., Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1, <<INTERNATIONAL JOURNAL OF CANCER>>, 2019; 144 (6): 1331-1344. [doi:10.1002/ijc.31983] [http://hdl.handle.net/10807/132193]

Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1

D'Alessandris, Quintino Giorgio;Pacioni, Simone;Giannetti, Stefano;Martini, Maurizio;Larocca, Luigi Maria;Pallini, Roberto
2019

Abstract

Bevacizumab, a VEGF-targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t-test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t-test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over-expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient-derived glioma stem-like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab-treated rats. Our study indicates that bevacizumab-induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells.
2019
Inglese
Falchetti, M. L., D'Alessandris, Q. G., Pacioni, S., Buccarelli, M., Morgante, L., Giannetti, S., Lulli, V., Martini, M., Larocca, L. M., Vakana, E., Stancato, L., Ricci-Vitiani, L., Pallini, R., Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1, <<INTERNATIONAL JOURNAL OF CANCER>>, 2019; 144 (6): 1331-1344. [doi:10.1002/ijc.31983] [http://hdl.handle.net/10807/132193]
File in questo prodotto:
File Dimensione Formato  
Int J Cancer, 2019.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.48 MB
Formato Adobe PDF
4.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/132193
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact