We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.
Bucur, D., Mazzoleni, D. C. S., Pratelli, A., Velichkov, B., Lipschitz Regularity of the Eigenfunctions on Optimal Domains, <<ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS>>, 2015; 216 (1): 117-151. [doi:10.1007/s00205-014-0801-6] [http://hdl.handle.net/10807/105881]
Lipschitz Regularity of the Eigenfunctions on Optimal Domains
Mazzoleni, Dario Cesare Severo;
2015
Abstract
We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.File | Dimensione | Formato | |
---|---|---|---|
bmpv140520.pdf
accesso aperto
Tipologia file ?:
Postprint (versione finale dell’autore successiva alla peer-review)
Licenza:
Non specificato
Dimensione
440.71 kB
Formato
Adobe PDF
|
440.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.