We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.

Bucur, D., Mazzoleni, D. C. S., Pratelli, A., Velichkov, B., Lipschitz Regularity of the Eigenfunctions on Optimal Domains, <<ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS>>, 2015; 216 (1): 117-151. [doi:10.1007/s00205-014-0801-6] [http://hdl.handle.net/10807/105881]

Lipschitz Regularity of the Eigenfunctions on Optimal Domains

Mazzoleni, Dario Cesare Severo;
2015

Abstract

We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.
2015
Inglese
Bucur, D., Mazzoleni, D. C. S., Pratelli, A., Velichkov, B., Lipschitz Regularity of the Eigenfunctions on Optimal Domains, <<ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS>>, 2015; 216 (1): 117-151. [doi:10.1007/s00205-014-0801-6] [http://hdl.handle.net/10807/105881]
File in questo prodotto:
File Dimensione Formato  
bmpv140520.pdf

accesso aperto

Tipologia file ?: Postprint (versione finale dell’autore successiva alla peer-review)
Licenza: Non specificato
Dimensione 440.71 kB
Formato Adobe PDF
440.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/105881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact