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Abstract. We study the optimal sets Ω∗ ⊆ Rd for spectral functionals of the form
F
(
λ1(Ω), . . . , λp(Ω)

)
, which are bi-Lipschitz with respect to each of the eigenvalues λ1(Ω),

λ2(Ω), . . . , λp(Ω) of the Dirichlet Laplacian on Ω, a prototype being the problem

min
{
λ1(Ω) + · · ·+ λp(Ω) : Ω ⊆ Rd, |Ω| = 1

}
.

We prove the Lipschitz regularity of the eigenfunctions u1, . . . , up of the Dirichlet Laplacian
on the optimal set Ω∗ and, as a corollary, we deduce that Ω∗ is open. For functionals
depending only on a generic subset of the spectrum, as for example λk(Ω), our result
proves only the existence of a Lipschitz continuous eigenfunction in correspondence to
each of the eigenvalues involved.

1. Introduction

In this paper we study the domains of prescribed volume, which are optimal for func-
tionals depending on the spectrum of the Dirichlet Laplacian. Precisely, we consider shape
optimization problems of the form

min
{
F
(
λ1(Ω), . . . , λp(Ω)

)
: Ω ⊆ Rd, |Ω| = 1

}
, (1.1)

where F : Rp → R is a given continuous function, increasing in each variable, and λk(Ω),
for k = 1, . . . , p, denotes the k-th eigenvalue of the Dirichlet Laplacian on Ω, i.e. the k-th
element of the spectrum of the Dirichlet Laplacian (due to the volume constraint |Ω| = 1,
the Dirichlet Laplacian on Ω has compact resolvent and its spectrum is discrete).

The optimization problems of the form (1.1) naturally arise in the study of physical
phenomena as, for example, heat diffusion or wave propagation inside a domain Ω ⊆ Rd.
Despite of their simple formulation, these problems turn out to be quite challenging and
their analysis usually depends on sophisticated variational techniques. Even the question
of the existence of a minimizer for the simplest spectral optimization problem

min
{
λk(Ω) : Ω ⊆ Rd, |Ω| = 1

}
, (1.2)

was answered only recently for general k ∈ N (see [7] and [23]). This question was first
formulated in the 19-th century by Lord Rayleigh in his treatise The Theory of Sound [26]
and it was related to the specific case k = 1. It was proved only in the 1920’s by Faber and
Krahn that the minimizer in this case is the ball. From this result one can easily deduce
the Krahn-Szegö inequality, which states that a union of two equal and disjoint balls is
optimal for (1.2) with k = 2, i.e. it has the smallest second eigenvalue λ2 among all sets of
prescribed measure. An explicit construction of an optimal set for higher eigenvalues is an
extremely difficult task. Balls are not always optimal, in fact it was proved by Keller and
Wolf in 1994 (see [27]) that a union of disjoint balls is not optimal for λ13 in two dimensions.
It was recently proved by Berger and Oudet (private communication) that the later result
holds for all k ∈ N large enough, which confirmed the previous numerical results obtained
in [24] and [3].

The classical variational approach to prove existence and regularity of minimizers failed to
provide a solution to the spectral problems (1.1) until the 1990’s, the main reason being the
lack of an appropriate topology on the space of domains Ω ⊆ Rd. A suitable convergence,
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called γ-convergence, was introduced by Dal Maso and Mosco (see [15, 16]) in the 1980’s and
was used by Buttazzo and Dal Maso (see [13]) for proving in 1993 a very general existence
result for (1.1), under the additional constraint that Ω ⊆ D, being D ⊆ Rd a given open
and bounded set (the box ). The presence of this geometric obstacle provided the necessary
compactness, needed to obtain the existence of an optimal domain in the class of quasi-open
sets, which are the superlevel sets {u > 0} of the Sobolev functions u ∈ H1(Rd) (exactly as
open sets are the superlevel sets of continuous functions). The proof of existence of a quasi-
open minimizer for (1.2) and, more generally, for (1.1) in the entire space Rd was concluded
in 2011 with the independent results of Bucur (see [7]) and Mazzoleni and Pratelli (see [23]).
Moreover, it was proved that the optimal sets are bounded (see [7] and [21]) and of finite
perimeter (see [7]).

The regularity of the optimal sets or of the corresponding eigenfunctions turned out to
be quite a difficult question, due to the min-max nature of the spectral cost functionals,
and it remained as an open problem since the general Buttazzo–Dal Maso existence the-
orem. The only result that provides the complete regularity of the free boundary ∂Ω of
the optimal set Ω considers only the minimizers of (1.2) in the special case k = 1 (and
under the additional constraint that Ω is contained in a box): more precisely, in this case
Briançon and Lamboley [5] proved that the free boundary of an optimal set is smooth. The
implementation of this result for higher eigenvalues presents some major difficulties since
the techniques, developed by Alt and Caffarelli in [1], used in the proof are exclusive for
functionals defined through a minimization, and not a min-max procedure, on the Sobolev
space H1

0(Ω).
In this paper we study the regularity of the eigenfunctions (or state functions) on the

optimal set Ω∗ for the problem (1.1). Our main tool is a result proved by Briançon, Hayouni
and Pierre [6], inspired by the pioneering work of Alt and Caffarelli (see [1]) on the regularity
for a free boundary problem. It states that a function u ∈ H1(Rd), satisfying an elliptic
PDE on the set Ω = {|u| > 0}, is Lipschitz continuous on the whole Rd if it satisfies the
following quasi-minimality property:∫

Rd
|∇u|2 dx ≤

∫
Rd
|∇v|2 dx+ crd, ∀v ∈ H1(Rd) s.t. u = v on Rd \Br(x) , (1.3)

for every ball Br(x) ⊆ Rd (see Theorem 3.3).
Since the variational characterization of the eigenvalue λk is given through a min-max

procedure, the transfer of the minimality properties of Ω to an eigenfunction uk is a non-
trivial task. In fact, it can be proved that the eigenfunction uk is a quasi-minimizer in
the sense of (1.3), provided that the eigenvalue λk(Ω

∗) is simple. But since this is not
expected to be true in general, we need to use an approximation procedure with sets Ωε,
which are solutions of suitably modified spectral optimization problems. We will study
the Lipschitz continuity of the eigenfunctions uεk on each Ωε and then pass to the limit
to recover the Lipschitz continuity of uk on Ω∗ (see Theorem 5.3). The uniformity of the
Lipschitz constants will be assured, roughly speaking, by the optimality conditions that the
state functions satisfy on the free boundary of Ωε.

The main result of the paper is Theorem 5.6, which applies to shape supersolutions of
functionals of the form

Ω 7→ F
(
λk1(Ω), . . . , λkp(Ω)

)
+ |Ω| ,

where F : Rp → R is increasing and bi-Lipschitz in each variable. Precisely, if a set Ω∗

satisfies

F
(
λk1(Ω∗), . . . , λkp(Ω

∗)
)

+ |Ω∗| ≤ F
(
λk1(Ω), . . . , λkp(Ω)

)
+ |Ω| ,

for all measurable sets Ω containing Ω∗, then there exists a family of L2-orthonormal eigen-
functions uk1 , . . . , ukp , corresponding respectively to λk1(Ω), . . . , λkp(Ω), which are Lipschitz

continuous on Rd.
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In some particular cases, as for example linear combinations of the form

F
(
λ1(Ω), . . . , λp(Ω)

)
=
∑p

i=1
αiλi(Ω) ,

with strictly positive αi for every i = 1, . . . , p, the minimizers are then proved to be open
sets (see Corollary 6.3). For this particular case, at least in two dimensions, it is also
possible to give a more direct proof which does not rely on the Alt–Caffarelli regularity
techniques (see [22]).

In [7], the analysis of shape subsolutions gave some qualitative information on the optimal
sets, in particular their boundedness and finiteness of the perimeter. Nevertheless, it is
known that a subsolution may not be equivalent to an open set. Continuity of the state
functions in free boundary problems relies, in general, on outer perturbations. Consequently
the study of supersolutions became a fundamental target, which is partially attained in this
paper. In the case of subsolutions, the problem could be reduced to the analysis of a
unique state function, precisely the torsion function, by controlling the variation of the k-
th eigenvalue for an inner geometric domain perturbation with the variation of the torsional
rigidity. As far as we know, an analogous approach for the analysis of shape supersolutions
can not be performed since one can not control the variation of the torsional rigidity by the
variation of the k-th eigenvalue.

This paper is organized as follows: in Section 2 we recall some tools about Sobolev-like
spaces, capacity and γ-convergence; in Section 3 we deal with the Lipschitz regularity for
quasi-minimizers of the Dirichlet energy and then, in Section 4, we apply these results to
eigenfunctions of the Dirichlet Laplacian corresponding to a simple eigenvalue. Then in
Section 5 we introduce the notion of shape supersolution and we prove our main results
Theorem 5.3 and Theorem 5.6, concerning the Lipschitz regularity of the eigenfunctions
associated to the general problem (1.1). At last, in Section 6, we show that for some
functionals the optimal sets are open.

2. Preliminary results

We will use the following notation and conventions throughout the paper:

• Cd denotes a constant depending only on the dimension d, which might increase
from line to line;
• ωd denotes the volume of the unit ball in Rd and thus dωd is the area of the unit

sphere;
• Hm denotes the m-dimensional Hausdorff measure in Rd;
• if the domain of integration is not specified, then it is assumed to be the whole

space Rd;
• the mean value of a function u : Ω→ R is denoted by∫

Ω
u dx :=

1

|Ω|

∫
Ω
u dx .

2.1. Sobolev spaces and PDEs on measurable domains. For a measurable set Ω ⊆ Rd
we define the Sobolev-like space H̃1

0(Ω) ⊆ H1(Rd) as

H̃1
0(Ω) =

{
u ∈ H1(Rd) : |{u 6= 0} \ Ω| = 0

}
.

If Ω is an open set with a Lipschitz boundary, then H̃1
0(Ω) coincides with the usual

Sobolev space H1
0(Ω), which is the closure of C∞c (Ω) with respect to the norm ‖u‖H1 :=(

‖u‖2L2 + ‖∇u‖2L2

)1/2
. For a generic set (even an open one) the equality above is false and

only the inclusion H1
0(Ω) ⊆ H̃1

0(Ω) in general holds.
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Remark 2.1. Another natural way to extend the notion of a Sobolev space to non-open
domains Ω ⊆ Rd is the following

Ĥ1
0(Ω) :=

{
u ∈ H1(Rd) : cap({u 6= 0} \ Ω) = 0

}
, (2.1)

where for every E ⊆ Rd the capacity of E is defined as

cap(E) = min
{
‖v‖2H1(Rd) : v ∈ H1(Rd), v ≥ 1 a.e. in a neighborhood of E

}
.

The advantage of this definition is that it coincides with the usual one for every open set

Ω ⊆ Rd, not just for Lipschitz ones (see [20]). Nevertheless, the spaces H̃1
0(Ω) appear more

suitable for the study of the regularity of minimizers of spectral functionals, hence we will
use these spaces in the present work.

Since H̃1
0(Ω) is a closed subspace of H1(Rd), one can define the Dirichlet Laplacian on Ω

through the weak solutions of elliptic problems on Ω. More precisely, given a set of finite
measure Ω ⊆ Rd and a function f ∈ L2(Ω), we say that the function u ∈ H1(Rd) satisfies
the equation

−∆u = f in Ω (2.2)

if u ∈ H̃1
0(Ω) and for every v ∈ H̃1

0(Ω) it is 〈∆u+ f, v〉 = 0, where for every v ∈ H1(Rd) we
set

〈∆u+ f, v〉 := −
∫
Rd
∇u · ∇v dx+

∫
Rd
fv dx . (2.3)

Equivalently, u is a solution of (2.2) if it is a minimizer in H̃1
0(Ω) of the functional Jf :

H1(Rd)→ R defined as

Jf (v) :=
1

2

∫
Rd
|∇v|2 dx−

∫
Rd
vf dx, v ∈ H1(Rd) .

Remark 2.2. It is straightforward to check that, if u is a solution of (2.2) in Ω, then u

also belongs to H̃1
0({u 6= 0}), and it is a solution of the equation

−∆u = f in {u 6= 0} .

If Ω is an open set with smooth boundary and u is a solution of (2.2), then the operator
∆u+ f : H1(Rd)→ R defined in (2.3) has the simple expression

〈∆u+ f, v〉 =

∫
∂Ω

∂u

∂n
v dHd−1, ∀ v ∈ H1(Rd) .

We can prove now that, in the general case of a measurable set Ω, the operator ∆u+ f is
a measure concentrated on the boundary of Ω.

Proposition 2.3. Let Ω ⊆ Rd be a set of finite measure, f ∈ L2(Ω), and u ∈ H̃1
0(Ω) be a

solution of (2.2). Then there is a capacitary Radon measure µ (this means, µ(E) = 0 for
every set E with zero capacity) such that, for every v ∈ H1(Rd), one has

〈∆u+ f, v〉 =

∫
Rd
v dµ . (2.4)

Moreover, µ satisfies the following properties:

(i) If u ≥ 0, then the measure µ is positive.
(ii) The support of µ is contained in the topological bondary ∂Ω of Ω.

Proof. Suppose first that u ≥ 0, and define the functions pn : R+ → [0, 1] as

pn(t) = nt if t ∈ [0, 1/n] , pn(t) = 1 if t ≥ 1/n .
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Then, for every non-negative ϕ ∈ C∞c (Rd), since pn(u)ϕ ∈ H̃1
0(Ω) we can evaluate

0 = 〈∆u+ f, pn(u)ϕ〉 =

∫
Rd
−∇u · ∇(pn(u)ϕ) + fpn(u)ϕdx

=

∫
Rd
−pn(u)∇u · ∇ϕ− p′n(u)|∇u|2ϕ+ fpn(u)ϕdx

≤
∫
Rd
pn(u) (−∇u · ∇ϕ+ fϕ) dx −−−→

n→∞

∫
Rd
−∇u · ∇ϕ+ fϕ dx = 〈∆u+ f, ϕ〉 .

The functional ∆u + f on C∞c (Rd) is then a positive distribution; keeping in mind that
a positive distribution is always a measure, we get a positive Radon measure µ such that
the equality (2.4) is true for every smooth function v. Thanks to the definition (2.3), an
immediate approximation argument shows that µ is a capacitary measure, then we get
at once that the right term in (2.4) makes sense also for any v ∈ H1(Rd), and that the
equation (2.4) is true in H1(Rd).

Consider now the case of a generic function u ∈ H̃1
0(Ω), and call Ω± =

{
u ≷ 0

}
. It is

immediate to observe that u+ solves the equation −∆u = f|Ω+ in Ω+, thus the argument

above implies that ∆u+ + f|Ω+ corresponds to a positive capacitary measure µ+, and the

very same argument shows also that ∆u−+f|Ω− is a negative capacitary measure µ−. Since

it is straightforward to check that
(
∆u+ + f|Ω+

)
+
(
∆u− + f|Ω−

)
= ∆u + f , the claim is

then proved with the (signed) measure µ = µ+ + µ−.
The fact that µ is concentrated on the topological boundary of Ω comes trivially by

approximation, since for every smooth ϕ concentrated either in the interior of Ω or in the
interior of Rd \ Ω one has 〈∆u+ f, ϕ〉 = 0 by definition. �

2.2. Solutions of PDEs with bounded data. In this subsection we quickly recall some

properties of the solutions u ∈ H̃1
0(Ω) of (2.2), in the case when Ω is a measurable set with

finite measure, and the data f ∈ L∞(Ω). First of all, an L∞ estimate for u holds, namely

‖u‖L∞ ≤
|Ω|2/d‖f‖L∞

2dω
2/d
d

, (2.5)

and the equality achieved when Ω is a ball and f ≡ const on Ω (see for instance [25]).
Moreover, since the function

v(x) = u(x) +
‖f‖L∞

2d
|x|2 ,

is clearly subharmonic on Rd, because ∆v = ∆u + ‖f‖L∞ = −f + ‖f‖L∞ ≥ 0, then it is
simple to notice that every point of Rd is a Lebesgue point for u. More in detail, whenever
v ∈ H1(Rd) is a function such that ∆v is a measure on Rd, then the following estimate
holds for any x ∈ Rd and r > 0 (for a proof, see for instance [6, Lemma 3.6]):∫

∂Br(x)
v dHd−1 − v(x) =

1

dωd

∫ r

ρ=0
ρ1−d∆v(Bρ(x)) dρ , (2.6)

where ∆v(Br(x)) is the measure of Br(x) with respect to the measure ∆v.
Most of the perturbation techniques that we will use to get the Lipschitz continuity of

the state functions u on the optimal sets Ω will provide us information about the mean
values

∫
Br
u dx or

∫
∂Br

u dHd−1. In order to transfer this information to the gradient |∇u|,
we will make use of the following classical result (see for example [19] for a proof).
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Remark 2.4 (Gradient estimate). If u ∈ H1(Br) is such that −∆u = f in Br and f ∈
L∞(Br), then the following estimates hold

‖∇u‖L∞(Br/2) ≤ Cd‖f‖L∞(Br) +
2d

r
‖u‖L∞(Br) ,

‖u‖L∞(B2r/3) ≤
r2

2d
‖f‖L∞(Br) + Cd

∫
∂Br

|u| dHd−1 .
(2.7)

Actually, while for the first estimate it is really important that the equation −∆u = f is
valid in the whole Br, the second estimate holds true also for balls Br centered in a point
x ∈ ∂Ω, where Ω is an open set such that u ∈ H1

0(Ω) and −∆u = f is valid in Ω. Even if
this fact is known, we will add a simple proof of it during the proof of Theorem 3.3 (which
is the only point of the paper where we need it).

2.3. Eigenfunctions and eigenvalues of measurable sets. We will consider the eigen-

values of the Dirichlet Laplacian on the linear subspace H̃1
0(Ω) ⊆ H1(Rd). In general, given

a closed linear subspace H of H1(Rd) such that the embedding H ⊆ L2(Rd) is compact, one
defines the spectrum σH of the Laplace operator −∆ on H as σH =

(
λ1(H), . . . , λk(H), . . .

)
,

where the k-th eigenvalue is defined as

λk(H) := min
Sk

max
u∈Sk\{0}

∫
|∇u|2 dx∫
u2 dx

, (2.8)

and the minimum ranges over all k-dimensional subspaces Sk of H.
Given a measurable set Ω with finite measure and k ∈ N, we define then the k-th

eigenvalue of the Dirichlet Laplacian on Ω as λk(Ω) := λk
(
H̃1

0(Ω)
)
. The sequence

1

λ1(Ω)
≥ 1

λ2(Ω)
≥ · · · ≥ 1

λk(Ω)
≥ . . .

constitutes precisely the spectrum of the compact operator RΩ : L2(Rd) → L2(Rd), which
associates to each f ∈ L2(Rd) the solution u of the equation (2.2). Thus, there is a sequence

of eigenfunctions uk ∈ H̃1
0(Ω) orthonormal in L2 and satisfying the equation

−∆uk = λk(Ω)uk in Ω .

Remark 2.5 (L∞ bound for the eigenfunctions). The eigenfunctions uk admit the following
L∞ estimate (for a proof we refer to [17, Example 2.1.8]):

‖uk‖L∞ ≤ e1/8πλk(Ω)d/4 . (2.9)

As a consequence, the arguments of Section 2.2 imply that every point of Rd is a Lebesgue
point for uk and that the function

x 7→ |uk(x)|+ e1/8πλk(Ω)
d+4
4

2d
|x|2

is subharmonic in Rd. Applying then (2.7), we get that for any ball Br essentially contained
in Ω (this means, Ω \Br is negligible) one has

‖∇uk‖L∞(Br/3) ≤ Cd
(
λk(Ω)

d+4
4 +

1

r

∫
∂Br

|uk| dHd−1

)
.

2.4. The γ- and the weak γ-convergence of measurable sets. Through the paper, we
will make extensively use of two variational notions of convergence defined on the measur-
able sets of finite Lebesgue measure, namely the γ-convergence and the weak γ-convergence.
To introduce these notions, we start by calling, for every measurable set Ω ⊆ Rd with finite

measure, wΩ ∈ H̃1
0(Ω) the solution of the problem

−∆wΩ = 1 in Ω .
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The measurable set Ω ⊆ Rd is determined, as a domain of the Sobolev space H̃1
0(Ω), by wΩ,

which is usually called energy function, or torsion function. In fact, we have the equality
(see for example [10])

H̃1
0(Ω) = H̃1

0

(
{wΩ > 0}

)
= Ĥ1

0({wΩ > 0}) .

If the measurable set Ω is such that
∣∣Ω∆{wΩ > 0}

∣∣ = 0, then we can choose its represen-
tative in the family of measurable sets to be precisely the set {wΩ > 0}.

Definition 2.6. We say that the sequence of sets of finite measure Ωn

• γ-converges to the set Ω, if the sequence wΩn converges strongly in L2(Rd) to the
function wΩ;
• weak γ-converges to the set Ω, if the sequence wΩn converges strongly in L2(Rd) to

a function w ∈ H1(Rd) such that Ω = {w > 0}.

In the case of a weak γ-converging sequence Ωn → Ω, there is a comparison principle
between the limit function w and the energy function wΩ, namely, the inequality w ≤
wΩ holds. This follows by the variational characterization of w, through the capacitary
measures, or it can also be proved directly by comparing the functions wΩn to wΩ (see [10]).
Using only this weak maximum principle and the definitions above, one may deduce the
following properties of the γ- and the weak γ-convergences (for more details we refer the
reader to the papers [11, 13] and the books [8, 20]).

Remark 2.7 (γ- and weak γ-convergences). If Ωn γ-converges to Ω, then it also weak
γ-converges to Ω. Under the additional assumption that Ω ⊆ Ωn for every n ∈ N, we have
that if Ωn weak γ-converges to Ω then it also γ-converges to Ω.

Remark 2.8 (measure and weak γ-convergences). If Ωn converges to Ω in L1(Rd), i.e.∣∣Ωn∆Ω
∣∣ → 0, then up to a subsequence Ωn weak γ-converges to Ω. On the other hand,

if Ωn weak γ-converges to Ω, then we have the following semi-continuity of the Lebesgue
measure:

|Ω| ≤ lim inf
n→∞

|Ωn| .

Remark 2.9 (γ- and Mosco convergences). (a) Suppose that Ωn weak γ-converges to Ω.

Then, if the sequence un ∈ H̃1
0(Ωn) converges in L2(Rd) to u ∈ H1(Rd), we have that

u ∈ H̃1
0(Ω). In particular, we obtain the semi-continuity of λk with respect to the weak

γ-convergence:

λk(Ω) ≤ lim inf
n→∞

λk(Ωn) .

(b) Suppose that Ωn γ-converges to Ω. Then, for every u ∈ H̃1
0(Ω) there is a sequence

un ∈ H̃1
0(Ωn) converging to u strongly in H1(Rd). As a consequence, one has the

continuity of λk with respect to the γ-convergence:

λk(Ω) = lim inf
n→∞

λk(Ωn) .

3. Lipschitz continuity of energy quasi-minimizers

In this section we study the properties of the local quasi-minimizers for the Dirichlet
integral. More precisely, let f ∈ L2(Rd) and let u ∈ H1(Rd) satisfy −∆u = f in

{
u 6= 0

}
.

Definition 3.1. We say that u is a local quasi-minimizer for the functional

Jf (u) =
1

2

∫
Rd
|∇u|2 dx−

∫
Rd
uf dx , (3.1)

if there is a positive constant C such that for every r > 0 we have

Jf (u) ≤ Jf (v) + Crd, ∀v ∈ Ar(u) , (3.2)
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where the admissible set Ar(u) is defined as

Ar(u) :=
{
v ∈ H1(Rd) : ∃ x0 ∈ Rd such that v − u ∈ H1

0(Br(x0))
}
.

Since Jf is clearly bounded below, it is equivalent to check the validity of (3.2) only for
0 ≤ r ≤ r0 for some given r0 > 0.

Remark 3.2. We highlight three equivalent characterizations of the local quasi-minimality.
First of all, it is equivalent (and this is straightforward from the definition) to the existence
of a constant C > 0 such that, for every ball Br(x0) of radius smaller than r0 and every
v ∈ H1

0

(
Br(x0)

)
, it is

|〈∆u+ f, v〉| ≤ 1

2

∫
Br(x0)

|∇v|2 dx+ Crd . (3.3)

Actually, by the non-linearity of the right term, it is enough that, for some constant C1, C2 >
0, it is

|〈∆u+ f, v〉| ≤ C1

∫
Br(x0)

|∇v|2 dx+ C2r
d . (3.4)

Indeed, it is clear that (3.3) implies (3.4); but on the other hand, if (3.4) holds true, then

for every v ∈ H̃1
0

(
Br(x0)

)
it is enough to apply (3.4) to the function v/2C1 to get the

validity of (3.3), with C = 2C1C2. The third equivalent formulation is the following: there
exists a constant Cb > 0 such that, for any ball Br(x0) of radius smaller than r0, and any
v ∈ H1

0(Br(x0)), it is

|〈∆u+ f, v〉| ≤ Cb rd/2
(∫

Br(x0)
|∇v|2 dx

)1/2

. (3.5)

Indeed, by the geometric–quadratic mean inequality (3.5) implies (3.4), and on the other

hand testing (3.4) with ṽ := rd/2‖∇v‖−1
L2 v gives (3.5) with Cb = C1+C2. A last observation,

again coming from the non-linearity of the right term in (3.4), is the following: if we
obtain (3.4) only for functions v ∈ H1

0

(
Br(x0)

)
satisfying

∫
|∇v|2 ≤ 1, then this is sufficient

to obtain (3.5) for every v ∈ H1
0

(
Br(x0)

)
, just testing (3.4) with ṽ = rd/2v/‖∇v‖L2 (this

requires to choose r0 ≤ 1, which is admissible as already observed).

We present now a theorem concerning the Lipschitz continuity of the local quasi-mi-
nimizers, which is a consequence of the techniques introduced by Briançon, Hayouni and
Pierre [6].

Theorem 3.3. Let Ω ⊆ Rd be a measurable set of finite measure, f ∈ L∞(Ω) and let the

function u ∈ H1(Rd) be a solution of the equation −∆u = f in H̃1
0(Ω), as well as a local

quasi-minimizer for the functional Jf . Then:

(1) u is Lipschitz continuous on Rd, and its Lipschitz constant depends on d, ‖f‖L∞, |Ω|,
r0, and the constant Cb in (3.5).

(2) the distribution ∆|u| is a Borel measure on the whole Rd, and in particular∣∣∆|u|∣∣(Br(x)
)
≤ C rd−1 (3.6)

for every x ∈ Rd such that u(x) = 0 and every 0 < r < r0/4, where the constant C
depends on d, ‖f‖L∞, |Ω| and Cb (but not on r0).

We notice that the local quasi-minimality condition is also necessary for the Lipschitz
continuity of u. In fact, it expresses in a weak form the boundedness of the gradient |∇u|
near the boundary ∂Ω.

The proof of this theorem is implicitly contained in [6, Theorem 3.1], but for the sake
of completeness we also reproduce it in the Appendix. We prove now a consequence of
the above theorem, which will be very important later. Recall from Section 2.3 that an
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eigenfunction u ∈ H̃1
0(Ω), corresponding to the eigenvalue λ, is a solution of −∆u = f with

f = λu; then, in particular, we can ask ourselves whether u is a local quasi-minimizer of
the functional Jf .

Theorem 3.4. Let Ω ⊆ Rd be a measurable set of finite measure, and let u be a normalized
eigenfunction on Ω with eigenvalue λ, as well as a local quasi-minimizer of Jf , being f =
λu; in particular, u satisfies (3.5) with some constant Cu and for r smaller than some
r0 = r0(u) ≤ 1. Then u is Lipschitz continuous in Rd and the Lipschitz constant depends
only on d, |Ω|, λ, and Cu, but not on r0.

Proof. By Theorem 3.3, applied to u and f := λu, we already know that u is Lipschitz
continuous, then we must only show that its Lipschitz constant is independent on r0.

Let us then set Ω̃ := {u 6= 0} (note that Ω̃ is open); let also x̄ be any point with

R := d(x̄, Ω̃c) < r0/8 and let y ∈ ∂Ω̃ be such that |y− x̄| = R. Using the first estimate (2.7)

on the ball BR/2(x̄) ⊆ Ω̃ we know that

|∇u(x̄)| ≤ Cdλ‖u‖L∞ +
4d

R
‖u‖L∞(BR/2(x̄)) . (3.7)

Let now z ∈ BR/2(x̄) be a point such that ‖u‖L∞(BR/2(x̄)) ≤ |u(z)|. For any 0 < r < R/2,

the ball Br(z) is contained in Ω̃, so we can apply the second estimate (2.7) on it, to get

‖u‖L∞(BR/2(x̄)) ≤ |u(z)| ≤ ‖u‖L∞(B2r/3(z)) ≤
R2

8d
λ‖u‖L∞ + Cd

∫
∂Br(z)

|u| dHd−1 .

Being this estimate valid for every 0 < r < R/2, then of course it is also

‖u‖L∞(BR/2(x̄)) ≤
R2

8d
λ‖u‖L∞ + Cd

∫
BR/2(z)

|u| dHd . (3.8)

Since BR/2(z) ⊆ B2R(y) by construction, we deduce∫
BR/2(z)

|u| dHd =
2d

ωdRd

∫
BR/2(z)

|u| ≤ 2d

ωdRd

∫
B2R(y)

|u| = 4d
∫
B2R(y)

|u| dHd . (3.9)

Finally, there exists some r ∈ (0, 2R) such that∫
B2R(y)

|u| dHd ≤
∫
∂Br(y)

|u| dHd−1 . (3.10)

Putting together (3.7), (3.8), (3.9) and (3.10), we then get

|∇u(x̄)| ≤ Cdλ‖u‖L∞ +
Cd
R

∫
∂Br(y)

|u| dHd−1 . (3.11)

Observe now that the ball Br(y) is not contained in Ω̃, hence in this ball we could not
apply the gradient estimates (2.7). Nevertheless, |u| belongs to H1(Rd), because u does,
and Theorem 3.3 ensures that ∆|u| is a measure on Rd; thus, we are in position to apply

the estimate (2.6) with v = |u| and x = y: keeping in mind that u(y) = 0 because y ∈ ∂Ω̃
and u is Lipschitz continuous, and using also (3.6) from Theorem 3.3, we get∫

∂Br(y)
|u| dHd−1 =

1

dωd

∫ r

ρ=0
ρ1−d∆|u|(Bρ(y)) dρ ≤ Cr

dωd
≤ 2CR

dωd
,

which inserted in (3.11), and recalling again Theorem 3.3, finally gives

|∇u(x̄)| ≤ C ′ , (3.12)

for some constant C ′ depending on d, λ, ‖u‖L∞ , |Ω| and Cu, but not on r0. In turn, since
Remark 2.5 says that ‖u‖L∞ can be bounded only in terms of λ and d, we have that C ′

actually depends only on d, λ, |Ω| and Cu, and of course still not on r0. Summarizing,
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up to now we have shown that the Lipschitz constant of u is independent of r0 in a r0/8-

neighborhood of the boundary of Ω̃; we will conclude the proof by showing that an estimate

near the boundary implies a (worse) estimate in the whole set Ω̃.

To do so, consider the auxiliary function P ∈ C∞(Ω̃) defined as

P := |∇u|2 + λu2 − 2λ2‖u‖2L∞wΩ̃
,

where w
Ω̃
∈ H1

0(Ω̃) is the solution of the equation −∆w
Ω̃

= 1 in Ω̃. A direct computation

gives that P is sub-harmonic on the open set Ω̃, indeed

∆P =
(
2[Hess(u)]2 − 2λ|∇u|2

)
+
(
2λ|∇u|2 − 2λ2u2

)
+ 2λ2‖u‖2L∞ ≥ 0 .

Thus, by the maximum principle we get

sup
{
P (x) : x ∈ Ω̃

}
≤ sup

{
P (x) : x ∈ Ω̃, dist(x, ∂Ω̃) < r0/8

}
,

and so, recalling the estimate (3.12) near the boundary, we immediately obtain

‖∇u‖2L∞ ≤ ‖P‖L∞ + 2λ2‖u‖2L∞‖wΩ̃
‖L∞ ≤ C ′2 + λ‖u‖2L∞ + 2λ2‖u‖2L∞‖wΩ̃

‖L∞ .
We finally conclude the proof, just recalling again that ‖u‖L∞ can be bounded only in

terms of λ and d, and also by the classical bound ‖w
Ω̃
‖L∞ ≤ Cd|Ω̃|2/d (see, for example,

[25, Theorem 1]). �

4. Shape quasi-minimizers for Dirichlet eigenvalues

In this section we discuss the regularity of the eigenfunctions on sets which are minimal
with respect to a given (spectral) shape functional; in particular, we will show in Lemma 4.6
that the k-th eigenfunction of a set which is a shape quasi-minimizer for λk is Lipschitz
as soon as λk is a simple eigenvalue for Ω. In what follows we denote by A the family of

subset of Rd with finite Lebesgue measure endowed with the equivalence relation Ω ∼ Ω̃,

whenever |Ω∆Ω̃| = 0.

Definition 4.1. We say that the measurable set Ω ∈ A is a shape quasi-minimizer for the
functional F : A → R if there exists a constant C > 0 such that for every ball Br(x) and

every set Ω̃ ∈ A with Ω∆Ω̃ ⊆ Br(x) it is

F(Ω) ≤ F(Ω̃) + C|Br| .
Of course, whenever F is positive (as is almost always the case in the applications) then
we can restrict ourselves in considering balls with radius r smaller than some given r0 > 0.

Remark 4.2. If the functional F is non-increasing with respect to inclusions, then Ω is a
shape quasi-minimizer if and only if for every ball Br(x) it is

F(Ω) ≤ F
(
Ω ∪Br(x)

)
+ C|Br| .

One may expect that the property of shape quasi-minimality contains some information
on the regularity of Ω, or of the eigenfunctions on Ω. Let us quickly see what happens with
a very simple example, namely, let us consider the Dirichlet Energy

E(Ω) := min
{
J1(u) : u ∈ H̃1

0(Ω)
}
,

where the functional J1 is intended in the sense of (3.1) with f ≡ 1, and let Ω be a shape
quasi-minimizer for E. Then, calling ωΩ the energy function, it is clear that for any ball

Br(x) and any Ω̃ ⊆ A such that Ω̃∆Ω ⊆ Br(x) it is

J1(wΩ) = E(Ω) ≤ E(Ω̃) + C|Br| ≤ J1(wΩ + ϕ) + C|Br| ∀ϕ ∈ H1
0

(
Br(x)

)
.

This means that wΩ is a local quasi-minimizer for the functional J1, according to Defini-
tion 3.1, and then Theorem 3.3 ensures that wΩ is Lipschitz continuous on Rd.

The case F = λk is more involved, since the k-th eigenvalue is not defined through a
single state function, but is variationally characterized by a min-max procedure involving
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an entire linear subspace of H̃1
0(Ω); therefore, we will need to transfer information from the

minimality of Ω to the variation of the eigenvalues of Ω, then from this to the variation of
the eigenfunctions, and finally from this to the regularity of Ω itself.

The main tool to prove Lemma 4.6 is the technical Lemma 4.3 below. There, we consider
a generic set Ω ∈ A, we take k ≥ l ≥ 1 so that

λk(Ω) = · · · = λk−l+1(Ω) > λk−l(Ω) , (4.1)

where by consistence we mean λ0(Ω) = 0, and we fix l normalized orthogonal eigenfunctions
corresponding to eigenvalue λk(Ω), that we call uk−l+1, . . . , uk. We will use the following
notation: given a vector α = (αk−l+1, ..., αk) ∈ Rl, we denote by uα the corresponding
linear combination

uα := αk−l+1uk−l+1 + ...+ αkuk . (4.2)

Lemma 4.3. Let Ω ⊆ Rd be a set of finite measure and k ≥ l ≥ 1 be such that (4.1) holds.
For every η > 0 there is a constant r0 > 0 such that, for every x ∈ Rd, every 0 < r < r0,
and every l-uple of functions vk−l+1, . . . , vk ∈ H1

0(Br(x)), there is a unit vector α ∈ Rl such
that

λk(Ω ∪Br(x)) ≤
∫
|∇(uα + vα)|2∫
|uα + vα|2

+ η

∫
|∇vα|2 . (4.3)

The constant r0 depends on Ω and in particular, if the gap λk−l+1(Ω)− λk−l(Ω) vanishes,
then so does r0 as well.

Proof. For the sake of shortness, let us simply write Br in place of Br(x), as well as λj in
place of λj(Ω). By the definition of the k-th eigenvalue, we know that

λk(Ω ∪Br) ≤ max

{∫
|∇u|2∫
u2

: u ∈ span
〈
u1, ..., uk−l, uk−l+1 + vk−l+1, ..., uk + vk

〉}
, (4.4)

and the maximum is attained for some linear combination

α1u1 + ...+ αk−luk−l + αk−l+1(uk−l+1 + vk−l+1) + ...+ αk(uk + vk) .

One can immediately notice that the vector α = (αk−l+1, ..., αk) ∈ Rl must be non-zero if
λk−l(Ω) < λk(Ω ∪ Br). And in turn, an immediate argument by contradiction shows that
this is always the case if r0 is small enough; we can then assume that α is a unitary vector.
On the other hand, consider the vector (α1, . . . , αk−l): if it is the null vector, then (4.3)
comes directly from (4.4), hence we have nothing to prove. Otherwise, let us call

u :=
α1u1 + ...+ αk−luk−l√

α2
1 + ...+ α2

k−l

,

so that
∫
u2 = 1,

∫
|∇u|2 ≤ λk−l, and from (4.4) we derive

λk(Ω ∪Br) ≤ max
t∈R

{∫
|∇(uα + vα + tu)|2∫
|uα + vα + tu|2

}
. (4.5)

We can now quickly evaluate, keeping in mind that u and uα are orthogonal,∫
|∇(uα + vα + tu)|2∫

(uα + vα + tu)2
≤
∫
|∇(uα + vα)|2 + 2t

∫
∇(uα + vα) · ∇u+ t2λk−l∫

|uα + vα|2 + 2t
∫

(uα + vα)u+ t2

=

∫
|∇(uα + vα)|2 + 2t

∫
Br
∇vα · ∇u+ t2λk−l∫

|uα + vα|2 + 2t
∫
Br

vαu+ t2
=
A+ 2ta+ t2λk−l
B + 2tb+ t2

,

where by shortness we write

A =

∫
Rd
|∇(uα + vα)|2 , a =

∫
Br

∇vα · ∇u

B =

∫
Rd
|uα + vα|2 , b =

∫
Br

vαu .
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Calling now for simplicity D =
√∫
|∇vα|2, and picking a small number δ = δ(η) > 0 to be

chosen later, it is clear by the Hölder inequality and the embedding of H1
0(Br) into L2(Br)

that, if r0 is small enough, then

|a| ≤ ‖∇u‖L2(Br)D ≤ δD , |b| ≤ ‖vα‖L2(Br) ≤ δD , B ≥
∫
Rd\Br

u2
α ≥ 1− δ . (4.6)

On the other hand, we can estimate the quotient A/B as

A

B
=

∫
|∇(uα + vα)|2 dx∫
|uα + vα|2 dx

=
λk + 2

∫
∇uα · ∇vα dx+

∫
|∇vα|2 dx

1 + 2
∫
uαvα dx+

∫
v2
α dx

≥
λk − 2D

(∫
Br
|∇uα|2 dx

)1/2
+D2

1 + 2
(∫

Br
u2
α dx

)1/2 (∫
Br

v2
α dx

)1/2
+
∫
v2
α dx

≥
λk − 2D

(∫
Br0
|∇uα|2 dx

)1/2
+D2

1 + 2
(∫

Br
v2
α dx

)1/2
+
∫
Br

v2
α dx

≥
λk − 2D

(∫
Br0
|∇uα|2 dx

)1/2
+D2

1 + 2Cd|Br0 |1/dD + C2
d |Br0 |2/dD2

> λk−l ,

(4.7)

where the last inequality is again true as soon as r0 is small enough. Moreover, we also
have

B + 2tb+ t2 ≥
(
1− δ

)
B ∀ t ∈ R . (4.8)

Indeed, if
∫
Br

v2
α ≤ 100, then for r0 small enough we have

|b| ≤

√∫
Br

u2

√∫
Br

v2
α ≤ δ ,

thus 2tb + t2 ≥ −b2 ≥ −δ2 ≥ −δB also by (4.6) and (4.8) holds. Instead, if
∫
Br

v2
α > 100,

then b ≤ δ
√
B and thus again 2tb+ t2 ≥ −b2 ≥ −δ2B and (4.8) is again true.

We are finally in position to conclude. Indeed, if

|t| ≤
√
δD and D2 ≥ λk ,

then A ≤ 3D2 and then, recalling (4.6) and (4.8), we have

A+ 2ta+ t2λk−l
B + 2tb+ t2

≤ A+ 2δ3/2D2 + δD2λk−l
B(1− δ)

≤ A

B
+ ηD2

as soon as δ is small enough with respect to η. Keeping in mind (4.5), this estimate
gives (4.3). Instead, if

|t| ≤
√
δD and D2 ≤ λk ,

then
A+ 2ta+ t2λk−l
B + 2tb+ t2

≤ A+ 2δ3/2D2 + δD2λk−l
B − 2δ3/2D2

≤ A

B
+ ηD2

and we again deduce (4.3). Finally, if

|t| ≥
√
δD ,

then by (4.6) |at| ≤
√
δt2 and |bt| ≤

√
δt2, which in view of (4.7) if δ � 1 gives

A+ 2ta+ t2λk−l
B + 2tb+ t2

≤
A+ t2

(
λk−l + 2

√
δ
)

B + t2
(
1− 2

√
δ
) ≤ A

B
≤ A

B
+ ηD2 .

We have then deduced (4.3) in any case, and the proof is concluded. �
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Remark 4.4. The preceding lemma enlightens one of the main difficulties in the study of
the regularity of spectral minimizers. Indeed, let Ω∗ be a solution of a spectral optimization
problem of the form (1.1) involving λk and such that (4.1) holds for some l > 1. Then every

perturbation ũk = uk + v of the eigenfunction uk ∈ H̃1
0(Ω∗) gives information on some

linear combination uα of eigenfunctions uk, . . . , uk−l+1, and not simply on the function
uk. Recovering some information on uk from estimates on uα is a difficult task, since the
combination is a priori unknown, and anyway it depends on the perturbation v.

Remark 4.5. In case λk(Ω) > λk−1(Ω), the estimate (4.3) reads as

λk(Ω ∪Br(x)) ≤
∫
|∇(uk + v)|2 dx∫
|uk + v|2 dx

+ η

∫
|∇v|2 dx (4.9)

for every ball Br(x) with r < r0 and every v ∈ H1
0(Br(x)).

Lemma 4.6. Let Ω ⊆ Rd be a shape quasi-minimizer for λk such that λk(Ω) > λk−1(Ω).

Then every eigenfunction uk ∈ H̃1
0(Ω), normalized in L2 and corresponding to the eigenvalue

λk(Ω), is Lipschitz continuous on Rd. Moreover, the Lipschitz constant depends only on
λk(Ω), |Ω|, d, and on the constant C in Definition 4.1, but not on uk nor on Ω.

Proof. Let uk be a normalized eigenfunction corresponding to λk. Applying first the shape
quasi-minimality of Ω and then the estimate (4.9) for v ∈ H1

0(Br(x)), with r ≤ r0 ≤ 1 and∫
|∇v|2 ≤ 1, we obtain

λk(Ω) ≤ λk
(
Ω ∪Br(x)

)
+ C|Br| ≤

∫
|∇(uk + v)|2 dx∫
|uk + v|2 dx

+ η

∫
|∇v|2 dx+ C|Br| . (4.10)

We now observe that, using Poincaré inequality and the hypotheses r ≤ 1,
∫
|∇v|2 dx ≤ 1,

we have ∫
|uk + v|2 dx ≤ 2

∫
u2
k dx+ 2

∫
v2 dx ≤ 2 +

2

λ1(Br)

∫
|∇v|2 dx ≤ 4.

Then we multiply both sides of (4.10) by
∫
|uk + v|2 dx, so to get

−2

∫
∇uk · ∇v + 2λk(Ω)

∫
ukv dx+ λk(Ω)

∫
v2 dx ≤ (4η + 1)

∫
|∇v|2 dx+ 4C|Br| ,

from which we deduce∣∣〈∆uk+λk(Ω)uk, v〉
∣∣ =

∣∣∣∣−∫ ∇uk · ∇v dx+ λk(Ω)

∫
ukv dx

∣∣∣∣ ≤ 4η + 1

2

∫
|∇v|2 dx+2C|Br| .

Hence the function uk is a quasi-minimizer for the functional Jf , with f = λk(Ω)uk, thanks

to (3.4) with C1 = 4η+1
2 and C2 = 2C. Since uk is bounded by (2.9), the claim follows

directly by Theorem 3.4. �

It is important to underline something: if Ω is a minimizer of λk, then one expects the
eigenvalue not to be simple; nevertheless, in the next sections we will be able to extract
some information on optimal sets by using the above result.

5. Shape supersolutions of spectral functionals

In this section we introduce the concept of shape supersolutions, and we use the result
of the preceding sections to derive the existence of Lipschitz eigenfunctions for sets which
are shape supersolutions of suitable spectral functionals.

Definition 5.1. We say that the set Ω∗ ⊆ Rd is a shape supersolution for the functional
F : A → R, defined on the class of Lebesgue measurable sets A, if it satisfies

F(Ω∗) ≤ F(Ω), ∀Ω ⊇ Ω∗ .

Let us list immediately some obvious but useful observations.
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Remark 5.2. • If Ω∗ is a shape supersolution for F + Λ| · | and Λ > 0 then, for every
Λ′ > Λ, Ω∗ is the unique solution of

min
{
F(Ω) + Λ′|Ω| : Ω Lebesgue measurable, Ω ⊇ Ω∗

}
.

• If F is non-increasing with respect to the inclusion, then every shape supersolution of the
functional F + Λ| · |, where Λ > 0, is also a shape quasi-minimizer for the functional F ,
with constant C = Λ in Definition 4.1 (this immediately follows by Remark 4.2).
• If Ω∗ is a shape supersolution for the functional

∑m
i=1 ciλi + Λ| · |, then it is also a shape

supersolution for the functional
∑m

i=1 c̃iλi+Λ̃|·| whenever 0 ≤ c̃i ≤ ci for every 1 ≤ i ≤ m,

and Λ̃ ≥ Λ ≥ 0 (this is immediate from the definition).
• If Ω∗ minimizes λk among all the sets of given volume, then it is also a shape quasi-

minimizer for the functional F = λk, as well as a shape supersolution of λk + Λ| · | for
some positive Λ (this follows just by rescaling).

In Lemma 4.6 it was shown that the k-th eigenfunctions of the the shape quasi-minimizers
for λk are Lipschitz continuous under the assumption λk(Ω) > λk−1(Ω). In the next The-
orem, we show that for shape supersolutions of λk + Λ| · | the later assumption can be
dropped.

Theorem 5.3. Let Ω∗ ⊆ Rd be a bounded shape supersolution for the functional λk +

Λ| · |, being Λ > 0. Then there is an eigenfunction uk ∈ H̃1
0(Ω∗), normalized in L2 and

corresponding to the eigenvalue λk(Ω
∗), which is Lipschitz continuous on Rd.

Proof. The core of the proof of this theorem is the following claim.
Claim. Let Ω∗ be a bounded shape supersolution for λj + Λj | · |, with some Λj > 0. Then,
either there exists a Lipschitz eigenfunction uj for λj(Ω

∗), or λj(Ω
∗) = λj−1(Ω∗) and there

exists some constant Λj−1 such that Ω∗ is also a shape supersolution for λj−1 + Λj−1| · |.
We show now first that the claim implies the thesis, and then the validity of the claim.
Step I. The claim implies the thesis.
By hypothesis, we can apply the claim with j = k. If we find a Lipschitz eigenfunction uk
for λk(Ω

∗) we are done; otherwise, we can apply the claim with j = k − 1. If we find a
Lipschitz eigenfunction uk−1 for λk−1(Ω∗) we are again done, since if we are in this situation
then λk−1(Ω∗) = λk(Ω

∗). Otherwise, we pass to j = k− 2 and so on, with a finite recursive
argument (which surely concludes since at least for j = 1 the first alternative of the claim
must hold true). Summarizing, there is always some 1 ≤ j̄ ≤ k such that a Lipschitz
eigenfunction for λj̄(Ω

∗) exists, and by construction λj̄(Ω
∗) = λk(Ω

∗). Therefore, the thesis
comes from the claim.
Step II. The claim holds true.
First of all, since λj is non-increasing with respect to the inclusion, then by Remark 5.2 we
know that Ω∗ is a shape quasi-minimizer for λj , with constant C = Λj in Definition 4.1.
As a consequence, if λj(Ω

∗) > λj−1(Ω∗), then Lemma 4.6 already ensures the Lipschitz
property for any normalized eigenfunction uj corresponding to λj(Ω

∗), and the claim is
already proved.

Let us instead assume that λj(Ω
∗) = λj−1(Ω∗) and, for every ε ∈ (0, 1), consider the

problem

min
{

(1− ε)λj(Ω) + ελj−1(Ω) + 2Λj |Ω| : Ω ⊇ Ω∗
}
. (5.1)

It is well-known that a minimizer Ωε of this problem exists, and it is clear that any such
minimizer is a shape supersolution of the functional λj + 2(1− ε)−1Λj | · |.

Suppose then that, for some sequence εn → 0, there is a corresponding sequence of solu-
tions Ωεn to (5.1) which satisfy λj(Ωεn) > λj−1(Ωεn). Again by Lemma 4.6, we deduce the
existence of normalized eigenfunctions unj for λj(Ωεn), which are Lipschitz with a constant

depending only on d, λj(Ωεn), |Ωεn |, and on Λj . Since the sets Ωεn are uniformly bounded
(see for instance [9, Proposition 5.12]), a suitable subsequence γ-converges to some set
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Ω̃ ⊇ Ω∗, which is then a minimizer of the functional λj + 2Λj | · | among sets containing Ω∗,

and thus in turn it is Ω̃ = Ω∗ by Remark 5.2. Still up to a subsequence, the functions unj
uniformly and weakly-H1

0 converge to a function uj ∈ H1
0(Ω∗); moreover, since for every

v ∈ H1
0(Ω∗) we have∫
∇uj · ∇v dx = lim

n→∞

∫
∇unj · ∇v dx = lim

n→∞
λj(Ωεn)

∫
unj v dx = λj(Ω

∗)

∫
ujv dx ,

we deduce that uj is a normalized Lipschitz eigenfunction for λj(Ω
∗), and then the claim

has been proved also in this case.
We are then left to consider the case when λj(Ω

∗) = λj−1(Ω∗) and, for some small ε̄ > 0,
every solution Ωε̄ of (5.1) has λj(Ωε̄) = λj−1(Ωε̄). This implies that Ωε̄ minimizes also
λj(Ω) + 2Λj |Ω| for sets Ω ⊇ Ω∗, so that actually Ωε̄ = Ω∗ again by Remark 5.2. In other
words, Ω∗ itself is a solution of (5.1) for ε̄. As an immediate consequence, Ω∗ is a shape
supersolution for the functional λj−1 + 2Λj ε̄

−1| · |: indeed, for any Ω ⊇ Ω∗ one has

ε̄λj−1(Ω∗) + 2Λj |Ω∗| ≤ ε̄λj−1(Ω∗) + (1− ε̄)
(
λj(Ω

∗)−λj(Ω)
)

+ 2Λj |Ω∗| ≤ ε̄λj−1(Ω) + 2Λj |Ω|
by (5.1), and thus the claim has been proved also in this last case. �

A particular case of the above theorem concerns the optimal sets for the k-th eigenvalue.

Corollary 5.4. Let Ω∗ be a minimizer of the k-th eigenvalue among all the quasi-open sets

of a given volume. Then, there exists an eigenfunction uk ∈ H̃1
0(Ω∗), corresponding to the

eigenvalue λk(Ω
∗), which is Lipschitz continuous on Rd.

Proof. Since it is known that such a minimizer exists and is bounded (see [7, 23, 21]), and
since we have already observed in Remark 5.2 that any such minimizer is also a shape
quasi-minimizer for λk + Λ| · |, the claim follows just by applying Theorem 5.3. �

It is important to observe that, if Ω∗ is a minimizer of the k-th eigenvalue and the k-th
eigenvalue of Ω∗ is not simple (which actually seems always to be the case, unless when
k = 1), then the above corollary only states the existence of a Lipschitz eigenfunction for

λk(Ω
∗), but not that the whole eigenspace of λk in H̃1

0(Ω∗) is done by Lipschitz functions.
Our next aim is to improve Theorem 5.3 by considering functionals depending on more

than just a single eigenvalue, hence of the form F
(
λk1(Ω), . . . , λkp(Ω)

)
. To do so, we need

the following preliminary result.

Lemma 5.5. Let Ω∗ ⊆ Rd be a bounded shape supersolution for the functional

λk + λk+1 + · · ·+ λk+p + Λ| · | ,
for some constant Λ > 0. Then there are L2-orthonormal eigenfunctions uk, . . . , uk+p ∈
H̃1

0(Ω∗), corresponding to the eigenvalues λk(Ω
∗), . . . , λk+p(Ω

∗), which are Lipschitz contin-

uous on Rd.

Proof. For any k ≤ j ≤ k+ p, the set Ω∗ is a shape supersolution for λj + Λ| · |, thus also a
shape quasi-minimizer for λj with constant Λ, by Remark 5.2; hence, if λj(Ω

∗) > λj−1(Ω∗),
by Lemma 4.6 we already know that the whole eigenspace corresponding to λj(Ω

∗) is done
by Lipschitz functions, and then for every j ≤ l ≤ k + p such that λj(Ω

∗) = λl(Ω
∗) we

have orthogonal eigenfunctions uj , uj+1, . . . , ul corresponding to the eigenvalues λj(Ω
∗) =

λj+1(Ω∗) = · · · = λl(Ω
∗).

Since eigenfunctions corresponding to different eigenvalues are always orthogonal, the
above observation concludes the proof of the lemma if λk(Ω

∗) > λk−1(Ω∗).
Otherwise, we can use an argument very similar to that of the proof of Theorem 5.3: for

every ε ∈ (0, 1) we consider a solution Ωε of the problem

min
{ k+p∑
j=k+1

λj(Ω) + (1− ε)λk(Ω) + ελk−1(Ω) + 2Λ|Ω| : Ω ⊇ Ω∗
}
, (5.2)
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which is in turn also a shape supersolution for the functional

k+p∑
j=k

λj +
2Λ

1− ε
| · | ,

again using Remark 5.2. If there is a sequence εn → 0 such that λk(Ωεn) > λk−1(Ωεn), then
we can apply the above argument to every set Ωεn finding orthogonal eigenfunctions unj for
k ≤ j ≤ k + p which are Lipschitz continuous, with constants not depending on ε. Then,
exactly as in the proof of Theorem 5.3, one immediately obtains that Ωεn γ-converges to
Ω∗, and that weak-H1

0 limits uj of the functions unj are the desired Lipschitz eigenfunctions.

We must now only face the case that, for some small ε̄, every solution Ωε̄ of (5.2) satisfies
λk(Ωε̄) = λk−1(Ωε̄), and thus Ωε̄ actually coincides with Ω∗. Since this implies in particular
that Ω∗ is a shape supersolution for the functional

λk−1 + λk + λk+1 + · · ·+ λk+p +
2Λ

ε̄
| · | ,

then we are in the same situation as at the beginning, with k replaced by k − 1. With a
finite recursion argument (which surely has an end, because we conclude when λk > λk−1,
which emptily holds when k = 1), we obtain the thesis. �

Before stating the main result of this section, we fix the following terminology:

• given two points x = (x1, . . . , xp) and y = (y1, . . . , yp) in Rp, we say that x ≥ y if
xi ≥ yi for all i = 1, . . . , p;
• a function F : Rp → R is said to be increasing if F (x) ≥ F (y) whenever x ≥ y;
• we say that F : Rp → R is increasingly bi-Lipschitz if F is increasing, Lipschitz,

and there is a constant c > 0 such that

F (x)− F (y) ≥ c|x− y| ∀ x ≥ y .
• an increasing and locally Lipschitz function F : Rp → R is said locally increasingly

bi-Lipschitz if for every x there is a constant c(x) and a neighborhood U ⊆ Rp of x
such that, for every y1 ≥ y2 in U , one has F (y1)− F (y2) ≥ c(x)|y1 − y2|.

Theorem 5.6. Let F : Rp → R be a locally increasingly bi-Lipschitz function, and let
0 < k1 < k2 < · · · < kp ∈ N and Λ > 0. Then for every bounded shape supersolution Ω∗ of
the functional

Ω 7→ F
(
λk1(Ω), . . . , λkp(Ω)

)
+ Λ|Ω| ,

there exists a sequence of orthonormal eigenfunctions uk1 , . . . , ukp, corresponding to the

eigenvalues λkj (Ω
∗), j = 1, . . . , p, which are Lipschitz continuous on Rd. Moreover,

• if for some kj we have λkj (Ω
∗) > λkj−1(Ω∗), then the full eigenspace corresponding

to λkj (Ω
∗) consists only on Lipschitz functions;

• if λkj (Ω
∗) = λkj−1

(Ω∗), then there exist at least kj −kj−1 + 1 orthonormal Lipschitz
eigenfunctions corresponding to λkj (Ω

∗).

Proof. Since the eigenspaces corresponding to different eigenvalues are orthogonal, we can
restrict ourselves to consider the case when λk1(Ω∗) = λkp(Ω

∗). Moreover, the local bi-
Lipschitz property ensures that Ω∗ is also shape supersolution of the functional

p∑
j=1

λkj + Λ′| · | ,

for a suitable positive constant Λ′. As a consequence, Ω∗ is shape supersolution also for the
functional (

p−1∑
j=1

1

kj+1 − kj

kj+1−1∑
i=kj

λi

)
+ λkp + Λ′| · | ,



LIPSCHITZ REGULARITY OF THE EIGENFUNCTIONS ON OPTIMAL DOMAINS 17

and then finally, using again Remark 5.2, also for the functional

kp∑
j=k1

λj + Λ′′| · | .

The claim then directly follows from Lemma 5.5. �

6. Optimal sets for functionals depending on the first k eigenvalues

In this last Section we will be able to show that, at least for some specific functionals,
a minimizer is actually an open set, instead of a quasi-open set. The following results are,
essentially, consequences of Theorem 5.6.

Theorem 6.1. Let F : Rk → R be a locally increasingly bi-Lipschitz function. Then every
solution Ω∗ of the problem

min
{
F
(
λ1(Ω), . . . , λk(Ω)

)
: Ω ⊆ Rd measurable, |Ω| = 1

}
, (6.1)

is essentially an open set. Moreover, the eigenfunctions of the Dirichlet Laplacian on Ω∗,
corresponding to the eigenvalues λ1(Ω∗), . . . , λk(Ω

∗), are Lipschitz continuous on Rd.

Proof. We first note that the existence of a solution of (6.1) follows by the results from [7]
and [23]. Then, we claim that every solution Ω∗ is a shape supersolution of the functional

Ω 7→ F
(
λ1(Ω), . . . , λk(Ω)

)
+ Λ|Ω| , (6.2)

for some suitably chosen Λ > 0. Indeed, let us take a generic set Ω ⊇ Ω∗ and let us call

t := (|Ω|/|Ω∗|)1/d > 1; we can assume that t is as close to 1 as we wish, since otherwise the
claim is emptily true, up to increase the constant Λ. Thus, calling L the Lipschitz constant
of F in a neighborhood of

(
λ1(Ω∗), . . . , λk(Ω

∗)
)
, by the optimality of Ω∗ we have

F
(
λ1(Ω∗), . . . , λk(Ω

∗)
)
≤ F

(
λ1(Ω/t), . . . , λk(Ω/t)

)
= F

(
t2λ1(Ω), . . . , t2λk(Ω)

)
≤ F

(
λ1(Ω), . . . , λk(Ω)

)
+ L(t2 − 1)

k∑
i=1

λi(Ω)

≤ F
(
λ1(Ω), . . . , λk(Ω)

)
+ L(td − 1)

k∑
i=1

λi(Ω
∗)

= F
(
λ1(Ω), . . . , λk(Ω)

)
+

L

|Ω∗|

k∑
i=1

λi(Ω
∗)
(
|Ω| − |Ω∗|

)
.

Then, Ω∗ is a shape supersolution for the functional (6.2), as claimed, and thus the Lipschitz
continuity of an orthonormal set {u1, . . . , uk} of eigenfunctions follows by Theorem 5.6.

The openness of the set Ω∗ follows by the observation that the open set

Ω∗∗ :=

k⋃
i=1

{uk 6= 0}

is essentially contained in Ω∗ and has the same first k eigenvalues as Ω∗: indeed, these
eigenvalues are smaller than those of Ω∗ by the characterization (2.8) of the eigenvalues
and thanks to the functions ui, but also greater than those of Ω∗ because Ω∗∗ is essentially
contained in Ω∗. By the optimality of Ω∗ we deduce that |Ω∗∆Ω∗∗| = 0, i.e., Ω∗∗ is
equivalent to Ω∗ and the proof is completed. �

Remark 6.2. In dimension 2, the continuity of the first k eigenfunctions, which is enough
to deduce the openness in Theorem 6.1, can be obtained also by a more direct method
involving only elementary tools (see [22]). Roughly speaking, using the argument from Re-
mark A.4, one can prove that in each level set of an eigenfunction there cannot be small
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holes, since otherwise it is more convenient to “fill” them and rescale the set. More pre-
cisely, for every ξ > 0 there exists some r > 0 such that Ω∗ contains the ball of radius r
centered at any x such that u2

1(x) + · · · + u2
k(x) > ξ. In particular, this fact provides an

estimate on the modulus of continuity of the function u2
1 + · · ·+ u2

k on the boundary of Ω∗.

Observe that, by the definition of the open set Ω∗∗ in the above proof, it follows that the

first k eigenvalues defined on the space H̃1
0(Ω∗∗), and those defined on the classical Sobolev

space H1
0(Ω∗∗), coincide. Thus, we have a solution of the shape optimization problem (6.1)

in its classical formulation.

Corollary 6.3. Let F : Rk → R be a locally increasingly bi-Lipschitz function. Then there
is a solution Ω∗ of the problem

min
{
F
(
λ1(Ω), . . . , λk(Ω)

)
: Ω ⊆ Rd open, |Ω| = 1

}
.

Moreover, the eigenfunctions of the Dirichlet Laplacian on Ω∗, corresponding to the eigen-
values λ1(Ω∗), . . . , λk(Ω

∗), are Lipschitz continuous on Rd.

The openness can be obtained not only for sets minimizing (6.1), but also for shape
supersolutions.

Proposition 6.4. Let F : Rk → R be a locally increasingly bi-Lipschitz function, and let
Ω∗ be a shape supersolution for the functional

Ω 7→ F
(
λ1(Ω), . . . , λk(Ω)

)
+ Λ|Ω| . (6.3)

Then there is an open set Ω∗∗ ⊆ Ω∗ such that λi(Ω
∗∗) = λi(Ω

∗) for i = 1, . . . , k, and
which is still a supersolution for the functional (6.3). Moreover, there exists a sequence of
Lipschitz orthonormal eigenfunctions corresponding to the first k eigenvalues in Ω∗∗.

Proof. Applying Theorem 5.6 to Ω∗, we find an orthonormal set of Lipschitz eigenfunctions
u1, u2, . . . , uk for Ω∗; then, as in Theorem 6.1, we define

Ω∗∗ :=
k⋃
i=1

{ui 6= 0} ,

which is open since the functions ui are Lipschitz continuous. As before, Ω∗∗ is essentially
contained in Ω∗, thus it has bigger eigenvalues, and on the other hand the definition of
eigenvalues –together with the fact that each ui is by definition in H1

0(Ω∗∗)– gives the
opposite inequality. As a consequence, we conclude that λi(Ω

∗) = λi(Ω
∗∗) for every i =

1, . . . , k. It is now immediate to show that Ω∗∗ is also a shape supersolution for (6.3):
indeed, for every Ω ⊇ Ω∗∗, we just compute

F
(
λ1(Ω∗∗), . . . , λk(Ω

∗∗)
)

+ Λ|Ω∗∗| = F
(
λ1(Ω∗), . . . , λk(Ω

∗)
)

+ Λ|Ω∗| − Λ|Ω∗ \ Ω∗∗|
≤ F

(
λ1(Ω ∪ Ω∗), . . . , λk(Ω ∪ Ω∗)

)
+ Λ|Ω ∪ Ω∗| − Λ|Ω∗ \ Ω∗∗|

≤ F
(
λ1(Ω), . . . , λk(Ω)

)
+ Λ|Ω| .

Being then Ω∗∗ a shape supersolution for (6.3), and being the functions ui also eigenfunc-
tions for Ω∗∗, the proof is concluded. �

For functionals of the form

Ω 7→ F
(
λk1(Ω), . . . , λkp(Ω)

)
,

depending on some non-consecutive eigenvalues λk1 , . . . , λkp , it is still possible to obtain
that an optimal sets Ω∗ for the problem

min
{
F
(
λk1(Ω), . . . , λkp(Ω)

)
: Ω ⊆ Rd measurable, |Ω| = 1

}
, (6.4)

is open, provided that an additional condition on the eigenvalues of Ω∗ is satisfied.



LIPSCHITZ REGULARITY OF THE EIGENFUNCTIONS ON OPTIMAL DOMAINS 19

Proposition 6.5. Let F : Rp → R be a locally increasingly bi-Lipschitz function, 0 < k1 <
k2 < · · · < kp be natural numbers, and Ω∗ be a minimizer for the problem (6.4). If for all
j = 1, . . . , p one has λkj (Ω

∗) > λkj−1(Ω∗), then Ω∗ is essentially open. Moreover all the

eigenfunctions corresponding to λkj (Ω
∗), for j = 1, . . . , p are Lipschitz continuous on Rd.

Proof. First of all, we remind that a minimizer for the problem (6.4) exists and is bounded,
and moreover it is also a shape supersolution of the functional F

(
λk1(Ω), . . . , λkp(Ω)

))
+Λ|Ω|

for a suitable Λ, exactly as in the proof of Theorem 6.1; thus, the second part of the claim
simply follows by Theorem 5.6, and it only remains to show that Ω∗ is essentially open.

Let us fix an orthonormal set of eigenfunctions {ui, 1 ≤ i ≤ kp} for the first kp eigenvalues
in Ω∗, and consider the family of indices

I :=
{
i ≤ kp : λi(Ω

∗) = λkj (Ω
∗), for some j

}
.

Recalling again Theorem 5.6, we know that for every i ∈ I the eigenfunction ui is Lipschitz
continuous, thus the set

ΩA :=

{
x ∈ Rd :

∑
i∈I

ui(x)2 > 0

}

is open, and of course essentially contained in Ω∗. Our aim is then to prove that N = Ω∗\ΩA

is negligible. Suppose, by contradiction, that |N | > 0 and let x ∈ N be a point of density
one for N , i.e.

lim
ρ→0

|N ∩Bρ(x)|
|Bρ(x)|

= 1 .

Since, for ρ→ 0, the sets Ω∗ \ (N ∩Bρ(x)) γ-converge to Ω∗ we have the convergence of the
spectra λk(Ω

∗ \ (N ∩Bρ(x)))→ λk(Ω
∗), for every k ∈ N. Then, being λkj (Ω

∗) > λkj−1(Ω∗),

we can choose ρ small enough such that the set Ω̃ = Ω∗ \ (N ∩Bρ(x)) satisfies

λkj−1(Ω̃) < λkj (Ω
∗), ∀ j = 1, . . . , p . (6.5)

We note now that for i ∈ I the eigenfunction ui belongs to H̃1
0(Ω̃), and since Ω̃ ⊆ Ω∗ we

get that ui satisfies the equation

−∆ui = λkj (Ω
∗)ui, ui ∈ H̃1

0(Ω̃) .

Thus, for each i ∈ I the number λi(Ω
∗) is also in the spectrum of the Dirichlet Laplacian

on Ω̃. Combined with (6.5) and with the fact that Ω̃ ⊆ Ω∗, this gives

λk(Ω̃) = λk(Ω
∗), ∀ k = 1, . . . , kp .

Since for every ρ > 0 we have |N ∩Bρ(x)| > 0, it follows that |Ω̃| < |Ω∗| = 1; by the strict

monotonicity of F , if we rescale Ω̃ till volume 1 we get a competitor strictly better than Ω∗

in (6.4), which is a contradiction with the optimality of Ω∗. �

Remark 6.6. Unfortunately, Proposition 6.5 provides the openness of optimal sets only

up to zero Lebesgue measure. Hence we have that H̃1
0(Ω∗) = H̃1

0(ΩA), but we do not know
in general if H1

0(Ω∗) = H1
0(ΩA); thus, it is not clear whether an open “classical” solution

exists, where by “classical” we refer to the case when the eigenvalues are considered in the

standard H1
0 spaces, and not in the modified H̃1

0 spaces. Keep in mind that this problem did
not occur with the situation of Theorem 6.1, as noticed right after Remark 6.2.
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Appendix A. Appendix: Proof of Theorem 3.3

For the sake of the completeness, we report here the proof of Theorem 3.3, given in [6].
We note that if the state function u, quasi-minimizer for the functional Jf , is positive, then
the classical approach of Alt and Caffarelli (see [1]) can be applied to obtain the Lipschitz
continuity of u. This approach is based on an external perturbation and on the following
inequality (see [1, Lemma 3.2])∣∣Br(x0) ∩ {u = 0}

∣∣
r2

( ∫
∂Br(x0)

u dHd−1
)2
≤ Cd

∫
Br(x0)

|∇(u− v)|2 dx , (A.1)

which holds for every x0 ∈ Rd, r > 0, u ∈ H1(Rd), u ≥ 0 and v ∈ H1(Br) that solves

min

{∫
Br(x0)

|∇v|2 dx : v − u ∈ H1
0(Br(x0)), v ≥ u

}
. (A.2)

Since for sign-changing state functions u, the inequality (A.1) is not known, one needs a
more careful analysis on the common boundary of {u > 0} and {u < 0}, which is based on
the monotonicity formula of Alt, Caffarelli and Friedmann.

Theorem A.1. Let U+, U− ∈ H1(B1) be continuous non-negative functions such that
∆U± ≥ −1 on B1 and U+U− = 0. Then there is a dimensional constant Cd such that for
each r ∈ (0, 1

2)(
1

r2

∫
Br

|∇U+(x)|2

|x|d−2
dx

)(
1

r2

∫
Br

|∇U−(x)|2

|x|d−2
dx

)
≤ Cd

(
1 +

∫
B1

|U+ + U−|2 dx
)
. (A.3)

For our purposes we will need the following rescaled version of this formula.

Corollary A.2. Let Ω ⊆ Rd be a quasi-open set of finite measure, f ∈ L∞(Ω) and u :
Rd → R be a continuous function such that

−∆u = f in Ω, u ∈ H1
0(Ω) . (A.4)

Setting u+ = sup{u, 0} and u− = sup{−u, 0}, there is a dimensional constant Cd such that
for each 0 < r ≤ 1/2(

1

r2

∫
Br

|∇u+(x)|2

|x|d−2
dx

)(
1

r2

∫
Br

|∇u−(x)|2

|x|d−2
dx

)
≤ Cd

(
‖f‖2L∞ +

∫
Ω
u2 dx

)
≤ Cm , (A.5)

where Cm = Cd‖f‖2L∞
(

1 + |Ω|
d+4
d

)
.

Proof. We apply Theorem A.1 to U± = ‖f‖−1
L∞u

± and substituting in (A.3) we obtain the
first inequality in (A.5). The second one follows, using the equation (A.4), since

‖u‖2L2 ≤ Cd|Ω|2/d‖∇u‖2L2 = Cd|Ω|2/d
∫

Ω
fu dx ≤ Cd|Ω|2/d+1/2‖f‖L∞‖u‖L2 .

�

The proof of the Lipschitz continuity of the quasi-minimizers for Jf needs two preliminary
results, precisely in Lemma A.3 we prove the continuity of u and in Lemma A.5, we give
an estimate on the Laplacian of u as a measure on the boundary ∂{u 6= 0}.

Lemma A.3. If u satisfies the assumptions of Theorem 3.3, then it is continuous.

Proof. Let xn → x∞ ∈ Rd and set δn := |xn−x∞|. If for some n, |Bδn(x∞)∩{u = 0}| = 0,
then −∆u = f in Bδn(x∞) and so u is continuous in x∞.

Assume then that, for all n, |Bδn(x∞) ∩ {u = 0}| 6= 0, and consider the function un :
Rd → R defined by un(ξ) = u(x∞ + δnξ). Since ‖un‖L∞ = ‖u‖L∞ for any n –and in turn
‖u‖L∞ < ∞ by (2.5)– we can assume, up to a subsequence, that un converges weakly-∗
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in L∞ to some function u∞ ∈ L∞(Rd). We will prove that u∞ ≡ 0 and that un → u∞
uniformly on B1, and this will of course imply the continuity of u in x∞.
Step I. u∞ is a constant.
For all R ≥ 1 and n ∈ N, we introduce the function vR,n such that:{

−∆vR,n = f, in BRδn(x∞) ,
vR,n = u, on ∂BRδn(x∞) .

Setting vn(ξ) := vR,n(x∞ + δnξ) and calling Cb the constant as in (3.5), for δn ≤ r0 we get∫
BR

|∇(un − vn)|2dξ = δ2−d
n

∫
BRδn (x∞)

|∇(u− vR,n)|2dx

= δ2−d
n

∫
BRδn (x∞)

∇u · ∇(u− vR,n)dx− δ2−d
n

∫
BRδn (x∞)

f(u− vR,n)dx

≤ Cbδ2−d
n

(∫
BRδn (x∞)

|∇(u− vR,n)|2dx

)1/2

Rd/2δd/2n

≤ CbRd/2δn
(∫

BR

|∇(un − vn)|2dξ
)1/2

,

which implies ∫
BR

|∇(un − vn)|2 dξ ≤ C2
b δ

2
n .

In particular, un − vn → 0 in H1(BR) for any R ≥ 1. On the other hand, calling fn(ξ) =
f(x∞ + δnξ), we have that {

−∆vn = δ2
nfn, in BR ,

vn ≤ ‖u‖L∞ , on ∂BR .

Since ‖fn‖L∞ = ‖f‖L∞ , the maximum principle implies that the vn are equi-bounded in BR;
hence, the estimate (2.7) implies that they are also equi-Lipschitz, thus equi-continuous, in
BR/2. So, up to a subsequence, vn uniformly converges to some function which is harmonic

on BR/2. Since vn − un → 0 in H1(BR) and un converges weakly-* in L∞(Rd) to u∞, we
deduce that vn converges uniformly to u∞ on BR, and that u∞ is harmonic on BR/2 for

every R ≥ 1. Therefore, u∞ is a bounded harmonic function on Rd, and this finally implies
that u∞ is constant.
Step II. un → u∞ in H1

loc(Rd).
In fact, for the functions ṽn = vn − u∞, we have that{

−∆ṽn = δ2
nfn, in BR ,

ṽn ≤ 2‖u‖L∞ , on ∂BR ,

and ṽn → 0 uniformly on BR/2. Again by (2.7), we have that ‖∇ṽn‖L∞(BR/4) → 0, and so

vn → u∞ in H1(BR/4). Since vn − un → 0 in H1(BR), we conclude also this step.

Step III. If u∞ ≥ 0, then u−n → 0 uniformly on balls.

Since on {un < 0} the equality −∆u−n = −δ2
nfn holds, on the whole Rd we have that

−∆u−n ≤ −δ2
nfnI{un<0} ≤ δ2

n|fn|. Thus, it is enough to prove that for each R ≥ 1, ũn → 0
uniformly on B2R/3, where {

−∆ũn = δ2
n|fn|, in BR ,

ũn = u−n , on ∂BR .

Since u−n → 0 in H1(BR), we have that
∫
∂BR

u−n → 0, thus the claim comes once again from

the estimate (2.7).
Step IV. u∞ ≡ 0.
Suppose, without loss of generality, that u∞ ≥ 0. Let yn = x∞ + δnξn, with ξn ∈ B1, be a



22 DORIN BUCUR, DARIO MAZZOLENI, ALDO PRATELLI, AND BOZHIDAR VELICHKOV

Lebesgue point for u with u(yn) = 0. For each s > 0 consider a function φs ∈ C∞c (B2s(yn))
such that 0 ≤ φs ≤ 1, φs ≡ 1 on Bs(yn), and ‖∇φs‖L∞ ≤ 2/s. Thus, we have that

|〈∆u+ f, φs〉| ≤ CdCbsd−1 ,

where Cb is the constant from (3.5). Denote with µ1 and µ2 the positive Borel measures
∆u+ + fI{u>0} and ∆u− − fI{u<0}. Then, we have

µ1(Bs(yn)) ≤ 〈µ1, φs〉 = 〈µ1 − µ2, φs〉+ 〈µ2, φs〉 ≤ CdCbsd−1 + µ2(B2s(yn)) .

As a consequence, we have

∆u+(Bs(yn)) ≤ CdCbsd−1 + ∆u−(B2s(yn)) + Cd‖f‖L∞sd

≤ Cd
(
Cb + ‖f‖L∞

)
sd−1 + ∆u−(B2s(yn)) ,

(A.6)

where the last inequality holds for every s ≤ 1. Recall now the standard estimate

∂

∂s

∫
∂Bs(yn)

u+ =

∫
∂Bs(yn)

∂u+

∂ν
=

1

dωdsd−1
∆u+(Bs) ,

and observe that since yn is a Lebesgue point for u with u(yn) = 0 then

lim
s→0

∫
∂Bs(yn)

u+ = 0 .

Thus, integrating the above estimate and using (A.6), we obtain∫
∂Bδn (yn)

u+ dHd−1 ≤ Cd
(
Cb + ‖f‖L∞

)
δn +

1

2

∫
∂B2δn (yn)

u− dHd−1

or, equivalently,∫
∂B1

u+
n (ξn + ·) dHd−1 ≤ Cd

(
Cb + ‖f‖L∞

)
δn +

1

2

∫
∂B2

u−n (ξn + ·) dHd−1 .

By Step III we know that the right-hand side goes to zero as n → ∞, hence so does also
the left-hand side. Up to a subsequence we may assume that ξn → ξ∞ and so, un(ξn+ ·)→
u∞(ξ∞ + ·) = u∞ in H1

loc(Rd). Thus u∞ ≡ 0.
Step V. The convergence un → 0 is uniform on the ball B1.
Since u∞ ≡ 0, this follows just applying twice Step III, once to u and once to −u. �

Remark A.4. In R2, the continuity of the state function u in Theorem 3.3 can be deduced
by the classical Alt-Caffarelli argument, which one can apply after reducing the problem to
the case when u is positive. For example, if u ∈ H1(R2) is a function satisfying

Jλu(u) + c|{u 6= 0}| ≤ Jλu(v) + c|{v 6= 0}|, ∀v ∈ H1(R2) ,

for some λ > 0, then u is continuous. Indeed, let x0 ∈ R2 be such that u(x0) > 0 and let
r0 > 0 and ε > 0 be small enough such that, for every x ∈ R2 and every r ≤ r0, we have∫
Br(x) |∇u|

2 dx ≤ ε. As a consequence, for every x ∈ R2 there is some rx ∈ [r0/2, r0] such

that
∫
∂Brx (x) |∇u|

2 dx ≤ 2ε/r0 and

osc∂Brx (x)u ≤
∫
∂Brx (x)

|∇u| dH1 ≤
√

2πr0

√
2ε/r0 ≤

√
4πε . (A.7)

On the other hand, the positive part u+ = sup{u, 0} of u satisfies ∆u+ + λ‖u‖L∞ ≥ 0 on
R2, and so there is a constant C > 0 such that

u(x0) ≤
∫
∂Brx0 (x0)

u dH1 + Cr2
x0 ,

which together with (A.7) gives that, choosing r0 > 0 small enough, we can construct a ball
Br(x0) of radius r ≤ r0 such that u ≥ u(x0)/2 > 0 on ∂Br(x0).
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We then notice that the set {u < 0} ∩ Br(x0) has measure 0. Indeed, if this is not
the case, then the function ũ = sup{−u, 0}IBr(x0) ∈ H1

0(Br(x0)) is such that Jλu(u) =

Jλu(−ũ) + Jλu(u+ ũ). By the maximum principle ‖ũ‖L∞ ≤ Cr2
0 and so, for some constant

C > 0, we have ∣∣Jλu(−ũ)
∣∣ ≤ Cr2

0

∣∣{u < 0} ∩Br(x0)
∣∣ < c

∣∣{u < 0} ∩Br(x0)
∣∣ ,

for r0 small enough. Hence we have Jλu(−ũ) + c|{u < 0} ∩Br(x0)| > 0, which contradicts
the quasi-minimality of u.

We conclude the proof by showing that the set {u = 0}∩Br(x0) has measure 0. Comparing
u with the function w = IBcr(x0)u+ IBr(x0)v, being v the function from (A.2), we have

c
∣∣{u = 0} ∩Br(x0)

∣∣ ≥ Jλu(u)− Jλu(w)

=
1

2

∫
Br(x0)

(
|∇u|2 − |∇v|2

)
dx−

∫
Br(x0)

λu(u− v) dx

≥ 1

2

∫
Br(x0)

|∇(u− v)|2 dx

≥ C2

r2

∣∣{u = 0} ∩Br(x0)
∣∣( ∫

∂Br(x0)
u dH1

)2
,

where the last inequality is due to (A.1). If we suppose that |{u = 0} ∩ Br(x0)| > 0, then
for some constant C > 0, we would have u(x0) ≤ Cr2

0, which is absurd choosing r0 > 0
small enough.

Lemma A.5. Let u ∈ H1(Rd) satisfy the assumptions of Theorem 3.3, and in particular
let r0 and Cb be as in (3.5). Then, for each x0 ∈ Rd for which u(x0) = 0 and for every
0 < r < r0/4, one has ∣∣∆|u|∣∣(Br(x0)) ≤ C rd−1 ,

where C depends only on d, |Ω|, ‖f‖L∞ and Cb.

Proof. Without loss of generality we can suppose x0 = 0. For each r > 0, consider the
functions

vr := vr+ − vr−, wr := wr+ − wr− ,
where vr± and wr± are the solutions of the following equations on Br{

−∆vr± = f± in Br ,
vr± = u± on ∂Br ,

{
−∆wr± = f± in Br ,

wr± = 0 on ∂Br .

Thus we have that vr± − wr± is harmonic in Br, and so we estimate∫
Br

|∇(vr± − wr±)|2 dx ≤
∫
Br

|∇u±|2 dx . (A.8)

Since u± − vr± + wr± ∈ H1
0(Br) and vr± − wr± is harmonic, we have∫

Br

|∇(u± − vr± + wr±)|2 dx =

∫
Br

∇u± · ∇(u± − vr± + wr±) dx

=

∫
Br

|∇u±|2 dx+

∫
Br

∇u± · ∇(wr± − vr±) dx ≤ 2

∫
Br

|∇u±|2 dx ,

where the last inequality is due to (A.8). Thus, for r ≤ 1/2 we obtain from the monotonicity
formula (A.5) the estimate( ∫

Br

|∇(u+ − vr+ + wr+)|2 dx
)( ∫

Br

|∇(u− − vr− + wr−)|2 dx
)

≤ 4

( ∫
Br

|∇u+|2 dx
)( ∫

Br

|∇u−|2 dx
)
≤ 4Cm .

(A.9)
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On the other hand, for 0 < r ≤ r0 ≤ 1, we have, also by (3.5),∫
Br

|∇(u− vr + wr)|2 dx ≤ 2

∫
Br

|∇(u− vr)|2 dx+ 2

∫
Br

|∇wr|2 dx

= 2

∫
Br

(
∇u · ∇(u− vr)− f(u− vr)

)
dx+ 2

∫
Br

|∇wr|2 dx

≤ Cbrd + Cb

∫
Br

|∇(u− vr)|2 + 2

∫
Br

|∇wr|2 dx ≤ Crd ,

(A.10)

where the constant C depends on d, |Ω|, ‖f‖L∞ and Cb. Using (A.9) and (A.10), we have∫
Br

|∇(u+ − vr+ + wr+)|2 dx+

∫
Br

|∇(u− − vr− + wr−)|2 dx

≤ 2

(∫
Br

|∇(u+ − vr+ + wr+)|2 dx
)1/2(∫

Br

|∇(u− − vr− + wr−)|2 dx
)1/2

+

∫
Br

|∇(u− vr + wr)|2 dx ≤ Crd ,

where the constant C might have increased but has the same dependences as before (recall
that Cm depends on d, |Ω| and ‖f‖L∞ !). Putting together this last estimate with (A.10),
we finally get ∫

Br

|∇(u± − vr±)|2 dx ≤ Crd . (A.11)

Let us now define

U := u+ − vr+ , µ1 := ∆u+ + fI{u>0} , µ2 := ∆u− − fI{u<0} .

Since U ∈ H1
0(Br) by definition, and it is sub-harmonic because

∆U = ∆(u+ − vr+) = ∆u+ + f+ ≥ ∆u+ + fI{u>0} = µ1 ≥ 0 , (A.12)

we obtain U ≤ 0, and then also by (A.11)∫
Br

vr+ dµ1 =

∫
Br

(vr+ − u+) dµ1 ≤
∫
Br

|∇U |2 dx ≤ Crd . (A.13)

Recalling that U is negative, for each z ∈ Br/4 we find∫
∂B3r/4(z)

U dHd−1 ≤ 0 ≤ u+(z) = U(z) + vr+(z) .

Applying then (2.6) to U ∈ H1(Br) (which is admissible because every signed distribution
is a measure) and using (A.12), we obtain

vr+(z) ≥ −U(z) = −
∫
∂B3r/4(z)

U dHd−1 +
1

dωd

∫ 3r/4

s=0
s1−d∆U(Bs(z)) ds

≥ 1

dωd

∫ 3r/4

0
s1−d∆U(Bs(z)) ds ≥

1

dωd

∫ 3r/4

0
s1−dµ1(Bs(z)) ds .

By (A.13) we get then

C(r/4)d ≥
∫
Br/4

vr+(z) dµ1(z) ≥ 1

dωd

∫
Br/4

dµ1(z)

∫ 3r/4

0
s1−dµ1(Bs(z)) ds

≥ 1

dωd

∫
Br/4

dµ1(z)

∫ 3r/4

r/2
s1−dµ1(Bs(z)) ds

≥ 1

dωd

∫
Br/4

dµ1(z)

∫ 3r/4

r/2
s1−dµ1(Br/4) ds ≥ Cdr2−d

(
µ1(Br/4)

)2
,



LIPSCHITZ REGULARITY OF THE EIGENFUNCTIONS ON OPTIMAL DOMAINS 25

i.e., µ1(Br) ≤ Crd−1 as soon as 0 < r < r0/4. Since the very same claim clearly holds for
µ2, and since

∣∣∆|u|∣∣ ≤ µ1 + µ2 + f , recalling that f ∈ L∞ we get the thesis. �

We are finally in position to give the proof of Theorem 3.3.

Proof of Theorem 3.3. By Lemma A.3 we know that u is continuous, so we can assume that
Ω coincides with the open set {u 6= 0}. Thanks to Lemma A.5, we already know the validity
of (3.6) for x such that u(x) = 0 and 0 < r < r0/4, hence to prove (2) of Theorem 3.3 we
only need to check that ∆|u| is a Borel measure on Rd. Since ∆|u| ≡ 0 outside of Ω, we
have only to take care of Ω. But ∆|u| coincides with ±f ∈ L∞ inside Ω, thus just covering
the compact set ∂Ω with finitely many balls of radius r0/5 centered at points of ∂Ω we
immediately obtain that ∆|u| is a Borel measure on the whole Rd.

Let us now prove (1). For any r > 0, denote with Ωr ⊆ Ω the set {x ∈ Ω : d(x,Ωc) < r}.
Choose x ∈ Ωr0/12 and let y ∈ ∂Ω be such that Rx := d(x,Ωc) = |x − y|. We claim now
that

‖u‖L∞(B2Rx (y)) ≤
9R2

x

2d
‖f‖L∞(B3Rx(y))

+ Cd

∫
∂B3Rx (y)

|u| dHd−1 . (A.14)

Notice that this is exactly the second gradient estimate (2.7) applied to u in the ballB3Rx(y),
but actually we cannot apply this estimate because on that ball the equation −∆u = f is
not satisfied. To prove the validity of (A.14), assume then without loss of generality that
‖u‖L∞(B2Rx (y)) = ‖u+‖L∞(B2Rx (y)), and define v+, as in Lemma A.5, the solution of{

−∆v+ = f+ in B3Rx(y) ,
v+ = u+ on ∂B3Rx(y) .

As already observed during the proof of Lemma A.5, in (A.12), the function u+ − v+ is
sub-harmonic hence, since it belongs to H1

0

(
B3Rx(y)

)
, it is negative in B3Rx(y). By this

observation, and applying (2.7) in B3Rx(y) to the function v+, which is admissible, we get

‖u‖L∞(B2Rx (y)) = ‖u+‖L∞(B2Rx (y)) ≤ ‖v+‖L∞(B2Rx (y))

≤ 9R2
x

2d
‖f+‖L∞(B3Rx(y))

+ Cd

∫
∂B3Rx (y)

|v+| dHd−1

≤ 9R2
x

2d
‖f‖L∞(B3Rx(y))

+ Cd

∫
∂B3Rx (y)

|u+| dHd−1

≤ 9R2
x

2d
‖f‖L∞(B3Rx(y))

+ Cd

∫
∂B3Rx (y)

|u| dHd−1 ,

thus the validity of (A.14) is established. Hence, applying the first gradient estimate (2.7)
to u in the ball BRx(x), using (A.14), and then applying the estimate (2.6), which is possible
because ∆|u| is a measure (mind also that u(y) = 0), we get

|∇u(x)| ≤ Cd‖f‖L∞ +
2d

Rx
‖u‖L∞(BRx (x)) ≤ Cd‖f‖L∞ +

2d

Rx
‖u‖L∞(B2Rx (y))

≤ (Cd + r0)‖f‖L∞ +
Cd
Rx

∫
∂B3Rx (y)

|u| dHd−1

≤ (Cd + r0)‖f‖L∞ +
Cd
Rx

∫ 3Rx

0
s1−d|∆|u||(Bs(y)) ds ≤ (Cd + r0)‖f‖L∞ + 3CdC ,

where C is the constant from Lemma A.5. Since for x ∈ Ω \ Ωr0/12 we have, still by (2.7),
that

|∇u(x)| ≤ Cd‖f‖L∞ +
24d

r0
‖u‖L∞ ,

we obtain that u is Lipschitz and its Lipschitz constant can be estimated as desired. �
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[9] D. Bucur, G. Buttazzo, B. Velichkov, Spectral optimization problems with internal constraint, Ann.
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