Cells isolated from foetal membranes of human term placenta display multiple properties, including some features of stem/progenitor cells, together with immunomodulatory actions and the ability to secrete bioactive soluble factors. Whilst such properties support the potential applicability of these cells in transplantation settings aimed at regenerating/repairing tissues in adults, theoretically, using these cells in prenatal treatment strategies may also be achievable. To assess the feasibility of a foetal membrane-derived cell-based therapeutic treatment during foetal development, we firstly addressed the question of whether in utero transplantation using these cells was possible. To this end, we assessed postnatal microchimerism after transplantation of amniotic membrane-derived cells (a mixture of both mesenchymal stromal/stem cells and epithelial cells) in foetal sheep. Transplantation was performed with or without human umbilical cord blood mononuclear cells and chorionic membrane-derived mesenchymal stromal/stem cells, and was followed by a postnatal booster cell injection. Lambs were euthanized 2-4 months postnatally and their organs/tissues were analysed for microchimerism through detection of human DNA. Human DNA was found in almost all tissues of all of the lambs, with the seemingly random appearance of human cells in some of the analysed tissues suggesting long-term human microchimerism and donor cell migration after in utero/postnatal booster xenotransplation. Differences in microchimerism tissue distribution between animals transplanted with different cell types are discussed. This pilot study adds to ongoing efforts by different investigators to explore the potential of in utero cellular transplantation, and warrants further investigation of using foetal membrane-derived cells for prenatal cell therapies.
Caruso, M., Bonassi Signoroni, P., Zanini, R., Ressel, L., Vertua, E., Bonelli, P., Dattena, M., Varoni, M. V., Wengler, G., Parolini, O., Feasibility and potential of in utero foetal membrane-derived cell transplantation, <<CELL AND TISSUE BANKING>>, 2014; 15 (2): 241-249. [doi:10.1007/s10561-013-9402-0] [http://hdl.handle.net/10807/92256]
Feasibility and potential of in utero foetal membrane-derived cell transplantation
Parolini, OrnellaUltimo
2014
Abstract
Cells isolated from foetal membranes of human term placenta display multiple properties, including some features of stem/progenitor cells, together with immunomodulatory actions and the ability to secrete bioactive soluble factors. Whilst such properties support the potential applicability of these cells in transplantation settings aimed at regenerating/repairing tissues in adults, theoretically, using these cells in prenatal treatment strategies may also be achievable. To assess the feasibility of a foetal membrane-derived cell-based therapeutic treatment during foetal development, we firstly addressed the question of whether in utero transplantation using these cells was possible. To this end, we assessed postnatal microchimerism after transplantation of amniotic membrane-derived cells (a mixture of both mesenchymal stromal/stem cells and epithelial cells) in foetal sheep. Transplantation was performed with or without human umbilical cord blood mononuclear cells and chorionic membrane-derived mesenchymal stromal/stem cells, and was followed by a postnatal booster cell injection. Lambs were euthanized 2-4 months postnatally and their organs/tissues were analysed for microchimerism through detection of human DNA. Human DNA was found in almost all tissues of all of the lambs, with the seemingly random appearance of human cells in some of the analysed tissues suggesting long-term human microchimerism and donor cell migration after in utero/postnatal booster xenotransplation. Differences in microchimerism tissue distribution between animals transplanted with different cell types are discussed. This pilot study adds to ongoing efforts by different investigators to explore the potential of in utero cellular transplantation, and warrants further investigation of using foetal membrane-derived cells for prenatal cell therapies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.