Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z = 2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Auzzi, R., Baiguera, S., Filippini, F., Nardelli, G., On Newton-Cartan local renormalization group and anomalies, <<JOURNAL OF HIGH ENERGY PHYSICS>>, 2016; 2016 (11): N/A-N/A. [doi:10.1007/JHEP11(2016)163] [http://hdl.handle.net/10807/91464]
Autori: | |
Titolo: | On Newton-Cartan local renormalization group and anomalies |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/JHEP11(2016)163 |
URL: | http://link.springer.com/article/10.1007%2FJHEP11%282016%29163 |
Data di pubblicazione: | 2016 |
Abstract: | Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z = 2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor. |
Lingua: | Inglese |
Rivista: | |
Citazione: | Auzzi, R., Baiguera, S., Filippini, F., Nardelli, G., On Newton-Cartan local renormalization group and anomalies, <<JOURNAL OF HIGH ENERGY PHYSICS>>, 2016; 2016 (11): N/A-N/A. [doi:10.1007/JHEP11(2016)163] [http://hdl.handle.net/10807/91464] |
Appare nelle tipologie: | Articolo in rivista, Nota a sentenza |