For a general class of autonomous quasi-linear elliptic equations on Rn we prove the existence of a least energy solution and show that all least energy solutions do not change sign and are radially symmetric up to a translation in Rn

Jeanjean, L., Squassina, M., Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations, <<ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE>>, 2009; 26 (N/A): 1701-1716 [http://hdl.handle.net/10807/90081]

Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations

Squassina, Marco
Ultimo
2009

Abstract

For a general class of autonomous quasi-linear elliptic equations on Rn we prove the existence of a least energy solution and show that all least energy solutions do not change sign and are radially symmetric up to a translation in Rn
Inglese
Jeanjean, L., Squassina, M., Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations, <<ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE>>, 2009; 26 (N/A): 1701-1716 [http://hdl.handle.net/10807/90081]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/90081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact