We study the symmetry properties of the weak positive solutions to a class of quasi-linear elliptic problems having a variational structure. On this basis, the asymptotic behaviour of global solutions of the corresponding parabolic equations is also investigated. In particular, if the domain is a ball, the elements of the ω limit set are nonnegative radially symmetric solutions of the stationary problem
Montoro, L., Sciunzi, B., Squassina, M., Asymptotic symmetry for a class of quasi-linear parabolic problems, <<ADVANCED NONLINEAR STUDIES>>, 2010; 10 (N/A): 789-818 [http://hdl.handle.net/10807/89981]
Autori: | ||
Titolo: | Asymptotic symmetry for a class of quasi-linear parabolic problems | |
Data di pubblicazione: | 2010 | |
Abstract: | We study the symmetry properties of the weak positive solutions to a class of quasi-linear elliptic problems having a variational structure. On this basis, the asymptotic behaviour of global solutions of the corresponding parabolic equations is also investigated. In particular, if the domain is a ball, the elements of the ω limit set are nonnegative radially symmetric solutions of the stationary problem | |
Lingua: | Inglese | |
Rivista: | ||
Citazione: | Montoro, L., Sciunzi, B., Squassina, M., Asymptotic symmetry for a class of quasi-linear parabolic problems, <<ADVANCED NONLINEAR STUDIES>>, 2010; 10 (N/A): 789-818 [http://hdl.handle.net/10807/89981] | |
Appare nelle tipologie: | Articolo in rivista, Nota a sentenza |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.