We obtain the existence of radially symmetric and decreasing solutions to a general class of quasi-linear elliptic problems by a nonsmooth version of a symmetric minimax principle recently obtained by Van Schaftingen.
Squassina, M., Radial symmetry of minimax critical points for nonsmooth functionals, <<COMMUNICATIONS IN CONTEMPORARY MATHEMATICS>>, 2011; 13 (N/A): 487-508. [doi:10.1142/S0219199711004361] [http://hdl.handle.net/10807/89958]
Radial symmetry of minimax critical points for nonsmooth functionals
Squassina, MarcoPrimo
2011
Abstract
We obtain the existence of radially symmetric and decreasing solutions to a general class of quasi-linear elliptic problems by a nonsmooth version of a symmetric minimax principle recently obtained by Van Schaftingen.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.