We obtain the existence of radially symmetric and decreasing solutions to a general class of quasi-linear elliptic problems by a nonsmooth version of a symmetric minimax principle recently obtained by Van Schaftingen.

Squassina, M., Radial symmetry of minimax critical points for nonsmooth functionals, <<COMMUNICATIONS IN CONTEMPORARY MATHEMATICS>>, 2011; 13 (N/A): 487-508. [doi:10.1142/S0219199711004361] [http://hdl.handle.net/10807/89958]

Radial symmetry of minimax critical points for nonsmooth functionals

Squassina, Marco
Primo
2011

Abstract

We obtain the existence of radially symmetric and decreasing solutions to a general class of quasi-linear elliptic problems by a nonsmooth version of a symmetric minimax principle recently obtained by Van Schaftingen.
Inglese
Squassina, M., Radial symmetry of minimax critical points for nonsmooth functionals, <<COMMUNICATIONS IN CONTEMPORARY MATHEMATICS>>, 2011; 13 (N/A): 487-508. [doi:10.1142/S0219199711004361] [http://hdl.handle.net/10807/89958]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/89958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact