We show that near any given minimizing sequence of paths for the mountain pass lemma, there exists a critical point whose polarization is also a critical point

Van Schaftingen, J., Squassina, M., Finding critical points whose polarization is a critical point, <<TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS>>, 2012; 40 (N/A): 371-379 [http://hdl.handle.net/10807/89030]

Finding critical points whose polarization is a critical point

Squassina, Marco
Ultimo
2012

Abstract

We show that near any given minimizing sequence of paths for the mountain pass lemma, there exists a critical point whose polarization is also a critical point
2012
Inglese
Van Schaftingen, J., Squassina, M., Finding critical points whose polarization is a critical point, <<TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS>>, 2012; 40 (N/A): 371-379 [http://hdl.handle.net/10807/89030]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/89030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact