We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis.
Perera, K., Squassina, M., Yang, Y., A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2015; 22 (N/A): 13-23 [http://hdl.handle.net/10807/87235]
Autori: | ||
Titolo: | A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators | |
Data di pubblicazione: | 2015 | |
Abstract: | We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis. | |
Lingua: | Inglese | |
Rivista: | ||
Citazione: | Perera, K., Squassina, M., Yang, Y., A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2015; 22 (N/A): 13-23 [http://hdl.handle.net/10807/87235] | |
Appare nelle tipologie: | Articolo in rivista, Nota a sentenza |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.