We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis.

Perera, K., Squassina, M., Yang, Y., A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2015; 22 (N/A): 13-23 [http://hdl.handle.net/10807/87235]

A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators

Squassina, Marco
Secondo
;
2015

Abstract

We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis.
Inglese
Perera, K., Squassina, M., Yang, Y., A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2015; 22 (N/A): 13-23 [http://hdl.handle.net/10807/87235]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/87235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 29
social impact