We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis.
Perera, K., Squassina, M., Yang, Y., A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators, <<ADVANCES IN NONLINEAR ANALYSIS>>, 2015; 22 (N/A): 13-23. [doi:10.1515/anona-2014-0038] [http://hdl.handle.net/10807/87235]
A note on the Dancer-Fucik spectra of the fractional p-Laplacian and Laplacian operators
Squassina, MarcoSecondo
;
2015
Abstract
We study the Dancer–Fučík spectrum of the fractional 푝-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For 푝 = 2, we present a very accurate local analysis.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.