By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm
Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p-Laplacian, <<DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS>>, 2016; 36 (N/A): 1813-1845 [http://hdl.handle.net/10807/87055]
Autori: | ||
Titolo: | Stability of variational eigenvalues for the fractional p-Laplacian | |
Data di pubblicazione: | 2016 | |
Abstract: | By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm | |
Lingua: | Inglese | |
Rivista: | ||
Citazione: | Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p-Laplacian, <<DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS>>, 2016; 36 (N/A): 1813-1845 [http://hdl.handle.net/10807/87055] | |
Appare nelle tipologie: | Articolo in rivista, Nota a sentenza |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.