By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm

Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p-Laplacian, <<DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS>>, 2016; 36 (N/A): 1813-1845 [http://hdl.handle.net/10807/87055]

Stability of variational eigenvalues for the fractional p-Laplacian

Squassina, Marco
Ultimo
2016

Abstract

By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm
Inglese
Brasco, L., Parini, E., Squassina, M., Stability of variational eigenvalues for the fractional p-Laplacian, <<DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS>>, 2016; 36 (N/A): 1813-1845 [http://hdl.handle.net/10807/87055]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/87055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 76
social impact