We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, µ) belongs to a suitable subset of R^2

He, X., Squassina, M., Zou, W., The Nehari manifold for fractional systems involving critical nonlinearities, <<COMMUNICATIONS ON PURE AND APPLIED ANALYSIS>>, 2016; 15 (N/A): 1285-1308 [http://hdl.handle.net/10807/87016]

The Nehari manifold for fractional systems involving critical nonlinearities

Squassina, Marco;
2016

Abstract

We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, µ) belongs to a suitable subset of R^2
Inglese
He, X., Squassina, M., Zou, W., The Nehari manifold for fractional systems involving critical nonlinearities, <<COMMUNICATIONS ON PURE AND APPLIED ANALYSIS>>, 2016; 15 (N/A): 1285-1308 [http://hdl.handle.net/10807/87016]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/87016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact