By means of a perturbation argument devised by P. Bolle, we prove the existence of infinitely many solutions for perturbed symmetric polyharmonic problems with non­homogeneous Dirichlet boundary conditions. An extension to the higher order case of the estimate from below for the critical values due to K. Tanaka is obtained.

Lancelotti, S., Musesti, A., Squassina, M., Infinitely many solutions for polyharmonic elliptic problems with broken symmetries, <<MATHEMATISCHE NACHRICHTEN>>, 2003; (253): 35-44 [http://hdl.handle.net/10807/86880]

Infinitely many solutions for polyharmonic elliptic problems with broken symmetries

Lancelotti, Sergio;Musesti, Alessandro;Squassina, Marco
2003

Abstract

By means of a perturbation argument devised by P. Bolle, we prove the existence of infinitely many solutions for perturbed symmetric polyharmonic problems with non­homogeneous Dirichlet boundary conditions. An extension to the higher order case of the estimate from below for the critical values due to K. Tanaka is obtained.
Inglese
Lancelotti, S., Musesti, A., Squassina, M., Infinitely many solutions for polyharmonic elliptic problems with broken symmetries, <<MATHEMATISCHE NACHRICHTEN>>, 2003; (253): 35-44 [http://hdl.handle.net/10807/86880]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/86880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact