Adult neurogenesis initiated by neural stem cells (NSCs) contributes to brain homeostasis, damage repair, and cognition. Energy metabolism plays a pivotal role in neurogenic cell fate decisions regarding self-renewal, expansion and multilineage differentiation. NSCs need to fine-tune quiescence and proliferation/commitment to guarantee lifelong neurogenesis and avoid premature exhaustion. Accumulating evidence supports a model whereby calorie restriction or increased energy expenditure reinforce NSC quiescence and promote self-renewal. Conversely, growth/proliferation inputs and anabolic signals, although necessary for neurogenesis, deplete the NSCs pool in the long run. This framework incorporates the emerging neurogenic roles of nutrient-sensing signaling pathways, providing a rationale for the alarming connection between nutritional imbalances, metabolic disorders and accelerated brain aging.
Cavallucci, V., Fidaleo, M., Pani, G., Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion, <<TRENDS IN ENDOCRINOLOGY AND METABOLISM>>, 2016; 27 (11): 756-769. [doi:10.1016/j.tem.2016.06.007] [http://hdl.handle.net/10807/84847]
Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion
Cavallucci, VirvePrimo
;Fidaleo, MarcoSecondo
;Pani, GiovambattistaUltimo
2016
Abstract
Adult neurogenesis initiated by neural stem cells (NSCs) contributes to brain homeostasis, damage repair, and cognition. Energy metabolism plays a pivotal role in neurogenic cell fate decisions regarding self-renewal, expansion and multilineage differentiation. NSCs need to fine-tune quiescence and proliferation/commitment to guarantee lifelong neurogenesis and avoid premature exhaustion. Accumulating evidence supports a model whereby calorie restriction or increased energy expenditure reinforce NSC quiescence and promote self-renewal. Conversely, growth/proliferation inputs and anabolic signals, although necessary for neurogenesis, deplete the NSCs pool in the long run. This framework incorporates the emerging neurogenic roles of nutrient-sensing signaling pathways, providing a rationale for the alarming connection between nutritional imbalances, metabolic disorders and accelerated brain aging.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.