In this paper we consider the snub square tiling of the plane ($(3^2,4,3,4)$ Archimedean tiling) and compute the probability that a random circle or a random segment intersects a side of the lattice. Moreover we compute the same probability if also the diameter of the circle or the length of the segment is a random variable.
Vassallo, S. F., Buffon Type Problems in Archimedean Tilings II, <<APPLIED MATHEMATICAL SCIENCES>>, 2016; (27): 1299-1306. [doi:http://dx.doi.org/10.12988/ams.2016.63100] [http://hdl.handle.net/10807/82508]
Autori: | |
Titolo: | Buffon Type Problems in Archimedean Tilings II |
Digital Object Identifier (DOI): | http://dx.doi.org/10.12988/ams.2016.63100 |
Data di pubblicazione: | 2016 |
Abstract: | In this paper we consider the snub square tiling of the plane ($(3^2,4,3,4)$ Archimedean tiling) and compute the probability that a random circle or a random segment intersects a side of the lattice. Moreover we compute the same probability if also the diameter of the circle or the length of the segment is a random variable. |
Lingua: | Inglese |
Rivista: | |
Citazione: | Vassallo, S. F., Buffon Type Problems in Archimedean Tilings II, <<APPLIED MATHEMATICAL SCIENCES>>, 2016; (27): 1299-1306. [doi:http://dx.doi.org/10.12988/ams.2016.63100] [http://hdl.handle.net/10807/82508] |
Appare nelle tipologie: | Articolo in rivista, Nota a sentenza |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.