The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity.

Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., Colussi, C., Ripoli, C., Grassi, C., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression, <<SCIENTIFIC REPORTS>>, 2016; (6): N/A-N/A. [doi:10.1038/srep22180] [http://hdl.handle.net/10807/75925]

Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression

Podda
Primo
;
Maria Vittoria; Cocco
Secondo
;
Sara; Mastrodonato;Alessia; Fusco;Salvatore; Leone;Lucia; Barbati;Saviana Antonella; Colussi;Claudia; Ripoli
Penultimo
;
Cristian; Grassi
Ultimo
2016

Abstract

The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity.
Inglese
Podda, M. V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S. A., Colussi, C., Ripoli, C., Grassi, C., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression, <<SCIENTIFIC REPORTS>>, 2016; (6): N/A-N/A. [doi:10.1038/srep22180] [http://hdl.handle.net/10807/75925]
File in questo prodotto:
File Dimensione Formato  
Sci. Rep. 6 22180 2016.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/75925
Citazioni
  • ???jsp.display-item.citation.pmc??? 68
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 134
social impact