The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozoneenriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects.

Pollastrini, M., Luchi, N., Michelozzi, M., Gerosa, G. A., Marzuoli, R., Bussotti, F., Capretti, P., Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp. pl. in an ozone enriched atmospheric environment, <<TREE PHYSIOLOGY>>, 2015; 35 (3): 331-340. [doi:10.1093/treephys/tpv008] [http://hdl.handle.net/10807/69117]

Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp. pl. in an ozone enriched atmospheric environment

Gerosa, Giacomo Alessandro;Marzuoli, Riccardo;
2015

Abstract

The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozoneenriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects.
2015
Inglese
Pollastrini, M., Luchi, N., Michelozzi, M., Gerosa, G. A., Marzuoli, R., Bussotti, F., Capretti, P., Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp. pl. in an ozone enriched atmospheric environment, <<TREE PHYSIOLOGY>>, 2015; 35 (3): 331-340. [doi:10.1093/treephys/tpv008] [http://hdl.handle.net/10807/69117]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/69117
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact