We show that all $2A$-Majorana representations of the Harada-Norton group $F_5$ have the same shape. If ${\mathcal R}$ is such a representation, we determine, using the theory of association schemes, the dimension and the irreducible constituents of the linear span $U$ of the Majorana axes. Finally, we prove that, if ${\mathcal R}$ is based on the (unique) embedding of $F_5$ in the Monster, $U$ is closed under the algebra product.

Franchi, C., Ivanov, A. A., Mainardis, M., The 2A-Majorana representations of the Harada-Norton group, <<ARS MATHEMATICA CONTEMPORANEA>>, 2016; 11 (1): 175-187 [http://hdl.handle.net/10807/68917]

The 2A-Majorana representations of the Harada-Norton group

Franchi, Clara;
2015

Abstract

We show that all $2A$-Majorana representations of the Harada-Norton group $F_5$ have the same shape. If ${\mathcal R}$ is such a representation, we determine, using the theory of association schemes, the dimension and the irreducible constituents of the linear span $U$ of the Majorana axes. Finally, we prove that, if ${\mathcal R}$ is based on the (unique) embedding of $F_5$ in the Monster, $U$ is closed under the algebra product.
Inglese
Franchi, C., Ivanov, A. A., Mainardis, M., The 2A-Majorana representations of the Harada-Norton group, <>, 2016; 11 (1): 175-187 [http://hdl.handle.net/10807/68917]
File in questo prodotto:
File Dimensione Formato  
859-4262-1-PB.pdf

non disponibili

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 331.66 kB
Formato Unknown
331.66 kB Unknown   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/68917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact