Neuroglobin and cellular prion protein (PrPC) are expressed in the nervous system and co-localized in the retinal ganglion cell layer. Both proteins do not have an unambiguously assigned function, and it was recently reported that PrPC aggregates rapidly in the presence of neuroglobin, whereas it does not aggregate in the presence of myoglobin, another globin with different tissue specificity. Electrostatic complementarity between the unstructured PrPCN-terminus and neuroglobin has been proposed to mediate this specific interaction. To verifythis hypothesis experimentally, we have used a combined approach of automated docking and molecular dynamics (MD) studies carried out on short stretches of prion protein (PrP) N-terminus to identify the minimal electrostatically interacting aminoacidic sequences with neuroglobin. Subsequently, we have performed the synthesis of these peptides by solid phase methods, and we tested their interaction with neuroglobin by surface plasmon resonance (SPR). Preliminary results confirm unequivocally the specific interaction between synthetic PrP peptides and neuroglobin suggesting a crucial role of PrPC positively charged regions in thisprotein protein association.

Palladino, P., Scaglione, G. L., Arcovito, A., Vitale, R. M., Amodeo, P., Vallone, B., Brunori, M., Benedetti, E., Rossi, F., Neuroglobin-prion protein interaction: what's the function?, <<JOURNAL OF PEPTIDE SCIENCE>>, 2011; 17 (Maggio): 387-391 [http://hdl.handle.net/10807/6837]

Neuroglobin-prion protein interaction: what's the function?

Scaglione, Giovanni Luca;Arcovito, Alessandro;
2011

Abstract

Neuroglobin and cellular prion protein (PrPC) are expressed in the nervous system and co-localized in the retinal ganglion cell layer. Both proteins do not have an unambiguously assigned function, and it was recently reported that PrPC aggregates rapidly in the presence of neuroglobin, whereas it does not aggregate in the presence of myoglobin, another globin with different tissue specificity. Electrostatic complementarity between the unstructured PrPCN-terminus and neuroglobin has been proposed to mediate this specific interaction. To verifythis hypothesis experimentally, we have used a combined approach of automated docking and molecular dynamics (MD) studies carried out on short stretches of prion protein (PrP) N-terminus to identify the minimal electrostatically interacting aminoacidic sequences with neuroglobin. Subsequently, we have performed the synthesis of these peptides by solid phase methods, and we tested their interaction with neuroglobin by surface plasmon resonance (SPR). Preliminary results confirm unequivocally the specific interaction between synthetic PrP peptides and neuroglobin suggesting a crucial role of PrPC positively charged regions in thisprotein protein association.
Inglese
Palladino, P., Scaglione, G. L., Arcovito, A., Vitale, R. M., Amodeo, P., Vallone, B., Brunori, M., Benedetti, E., Rossi, F., Neuroglobin-prion protein interaction: what's the function?, <<JOURNAL OF PEPTIDE SCIENCE>>, 2011; 17 (Maggio): 387-391 [http://hdl.handle.net/10807/6837]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10807/6837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact