By using X-ray absorption near edge structure (XANES) spectroscopy, we show that under prolonged exposure to Synchrotron X-rays, at T < 10 K, the Fe-heme in carbonmonoxy-myoglobin (MbCO) undergoes a slow two-state transition process. The final spectrum is nearly identical to that of the classical photoproduct (Mb*CO) obtained by UV−visible light illumination at 15 K. By increasing the temperature, the starting spectrum of MbCO is recovered at T > 100 K, demonstrating that the process is reversible and no damage occurred at the heme site in the time course of the experiment. Thus, the overall X-ray-induced process at low temperature is identical to the well-known (light-induced) photolysis of CO-hemeproteins.
Arcovito, A., Della Longa, S., X-Ray-Induced Lysis of the Fe-CO Bond in Carbonmonoxy-Myoglobin, <<INORGANIC CHEMISTRY>>, 2010; 49 (21): 9958-9961 [http://hdl.handle.net/10807/6812]
X-Ray-Induced Lysis of the Fe-CO Bond in Carbonmonoxy-Myoglobin
Arcovito, Alessandro;
2010
Abstract
By using X-ray absorption near edge structure (XANES) spectroscopy, we show that under prolonged exposure to Synchrotron X-rays, at T < 10 K, the Fe-heme in carbonmonoxy-myoglobin (MbCO) undergoes a slow two-state transition process. The final spectrum is nearly identical to that of the classical photoproduct (Mb*CO) obtained by UV−visible light illumination at 15 K. By increasing the temperature, the starting spectrum of MbCO is recovered at T > 100 K, demonstrating that the process is reversible and no damage occurred at the heme site in the time course of the experiment. Thus, the overall X-ray-induced process at low temperature is identical to the well-known (light-induced) photolysis of CO-hemeproteins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.