Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically important drug-resistant bacterial infections.

Ballarin, A., Posteraro, B., Demartis, G., Gervasi, S., Panzarella, F., Torelli, R., Paroni Sterbini, F., Morandotti, G. A., Posteraro, P., Ricciardi, G., Gervasi Vidal, K., Sanguinetti, M., Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data, <<BMC INFECTIOUS DISEASES>>, 2014; 14 (1): 634-634. [doi:10.1186/s12879-014-0634-9] [http://hdl.handle.net/10807/65997]

Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data

Posteraro, Brunella;Torelli, Riccardo;Paroni Sterbini, Francesco;Morandotti, Grazia Angela;Ricciardi, Gualtiero;Sanguinetti, Maurizio
2014

Abstract

Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically important drug-resistant bacterial infections.
Inglese
Ballarin, A., Posteraro, B., Demartis, G., Gervasi, S., Panzarella, F., Torelli, R., Paroni Sterbini, F., Morandotti, G. A., Posteraro, P., Ricciardi, G., Gervasi Vidal, K., Sanguinetti, M., Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data, <<BMC INFECTIOUS DISEASES>>, 2014; 14 (1): 634-634. [doi:10.1186/s12879-014-0634-9] [http://hdl.handle.net/10807/65997]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/65997
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact