General (i.e. including non-continuous and non-Archimedean) absolute planes have been classified in different ways, e.g. by using Lambert–Saccheri quadrangles (cf. Greenberg, J Geom 12/1:45-64, 1979; Hartshorne, Geometry; Euclid and beyond, Springer, Berlin, 2000; Karzel and Marchi, Le Matematiche LXI:27–36, 2006; Rostamzadeh and Taherian, Results Math 63:171–182, 2013) or coordinate systems (cf. Pejas, Math Ann 143:212–235, 1961 and, for planes over Euclidean fields, Greenberg, J Geom 12/1:45-64, 1979). Here we consider the notion of quasi-end, a pencil determined by two lines which neither intersect nor have a common perpendicular (an ideal point of Greenberg, J Geom 12/1:45-64, 1979). The cardinality ω of the quasi-ends which are incident with a line is the same for all lines hence it is an invariant ω_A of the plane A and can be used to classify absolute planes. We consider the case ω_A=0 and, for ω_A≥2 (it cannot be 1) we prove that in the singular case ω_A must be infinite. Finally we prove that for hyperbolic planes, ends and quasi-ends are the same, so ω_A=2 .

Pianta, S., Karzel, H., Rostamzadeh, M., Taherian, S. -., Classification of general absolute planes by quasi-ends, <<AEQUATIONES MATHEMATICAE>>, 2015; (Vol. 89 no. 3): 863-872. [doi:10.1007/s00010-014-0283-5] [http://hdl.handle.net/10807/65248]

Classification of general absolute planes by quasi-ends

Pianta, Silvia;
2015

Abstract

General (i.e. including non-continuous and non-Archimedean) absolute planes have been classified in different ways, e.g. by using Lambert–Saccheri quadrangles (cf. Greenberg, J Geom 12/1:45-64, 1979; Hartshorne, Geometry; Euclid and beyond, Springer, Berlin, 2000; Karzel and Marchi, Le Matematiche LXI:27–36, 2006; Rostamzadeh and Taherian, Results Math 63:171–182, 2013) or coordinate systems (cf. Pejas, Math Ann 143:212–235, 1961 and, for planes over Euclidean fields, Greenberg, J Geom 12/1:45-64, 1979). Here we consider the notion of quasi-end, a pencil determined by two lines which neither intersect nor have a common perpendicular (an ideal point of Greenberg, J Geom 12/1:45-64, 1979). The cardinality ω of the quasi-ends which are incident with a line is the same for all lines hence it is an invariant ω_A of the plane A and can be used to classify absolute planes. We consider the case ω_A=0 and, for ω_A≥2 (it cannot be 1) we prove that in the singular case ω_A must be infinite. Finally we prove that for hyperbolic planes, ends and quasi-ends are the same, so ω_A=2 .
2015
Inglese
Pianta, S., Karzel, H., Rostamzadeh, M., Taherian, S. -., Classification of general absolute planes by quasi-ends, <<AEQUATIONES MATHEMATICAE>>, 2015; (Vol. 89 no. 3): 863-872. [doi:10.1007/s00010-014-0283-5] [http://hdl.handle.net/10807/65248]
File in questo prodotto:
File Dimensione Formato  
10.1007_s00010-014-0283-5.pdf

non disponibili

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 608.6 kB
Formato Unknown
608.6 kB Unknown   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/65248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact