Background The levels of 19 elements (As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Tl, U, V, Zn) from sixteen different Argentine production sites of unifloral [eucalyptus (Eucaliptus rostrata), chilca (Baccharis salicifolia), Algarrobo (Prosopis sp.), mistol (Ziziphus mistol) and citric] and multifloral honeys were measured with the aim to test the quality of the selected samples. Typical quality parameters of honeys were also determined (pH, sugar content, moisture). Mineral elements were determined by using inductively coupled plasma mass spectrometer (ICP-MS DRC). We also evaluated the suitability of honey as a possible biomonitor of environmental pollution. Thus, the sites were classified through cluster analysis (CA) and then pattern recognition methods such as Principal Component Analysis (PCA) and discriminant analysis (DA) were applied. Results Mean values for quality parameters were: pH, 4.12 and 3.81; sugar 82.1 and 82.0 °brix; moisture, 16.90 and 17.00% for unifloral and multifloral honeys respectively. The water content showed good maturity. Likewise, the other parameters confirmed the good quality of the honeys analysed. Potassium was quantitatively the most abundant metal, accounting for 92,5% of the total metal contents with an average concentration of 832.0 and 816.2 μg g-1 for unifloral and multifloral honeys respectively. Sodium was the second most abundant major metal in honeys with a mean value of 32.16 and 33.19 μg g-1 for unifloral and multifloral honeys respectively. Mg, Ca, Fe, Mn, Zn and Cu were present at low-intermediate concentrations. For the other 11 trace elements determined in this study (As, Be, Cd, Co, Cr, Ni, Pb, Se, Tl, U and V), the mean concentrations were very low or below of the LODs. The sites were classified through CA by using elements’ and physicochemical parameters data, then DA on the PCA factors was applied. Dendrograms identified three main groups. PCA explained 52.03% of the total variability with the first two factors. Conclusions In general, there are no evidences of pollution for the analysed honeys. The analytical results obtained for the Argentine honeys indicate the products’ high quality. In fact, most of the toxic elements were below LODs. The chemometric analysis combining CA, DA and PCA showed their aptness as useful tools for honey’s classification. Eventually, this study confirms that the use of honey as biomonitor of environmental contamination is not reliable for sites with low levels of contamination.

Conti, M., Finoia, M., Fontana, L., Mele, G., Botrè, F., Iavicoli, I., Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters, <<CHEMISTRY CENTRAL JOURNAL>>, 2014; 8 (1): 44-N/A. [doi:10.1186/1752-153X-8-44] [http://hdl.handle.net/10807/64265]

Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters

Fontana, Luca;Iavicoli, Ivo
2014

Abstract

Background The levels of 19 elements (As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Tl, U, V, Zn) from sixteen different Argentine production sites of unifloral [eucalyptus (Eucaliptus rostrata), chilca (Baccharis salicifolia), Algarrobo (Prosopis sp.), mistol (Ziziphus mistol) and citric] and multifloral honeys were measured with the aim to test the quality of the selected samples. Typical quality parameters of honeys were also determined (pH, sugar content, moisture). Mineral elements were determined by using inductively coupled plasma mass spectrometer (ICP-MS DRC). We also evaluated the suitability of honey as a possible biomonitor of environmental pollution. Thus, the sites were classified through cluster analysis (CA) and then pattern recognition methods such as Principal Component Analysis (PCA) and discriminant analysis (DA) were applied. Results Mean values for quality parameters were: pH, 4.12 and 3.81; sugar 82.1 and 82.0 °brix; moisture, 16.90 and 17.00% for unifloral and multifloral honeys respectively. The water content showed good maturity. Likewise, the other parameters confirmed the good quality of the honeys analysed. Potassium was quantitatively the most abundant metal, accounting for 92,5% of the total metal contents with an average concentration of 832.0 and 816.2 μg g-1 for unifloral and multifloral honeys respectively. Sodium was the second most abundant major metal in honeys with a mean value of 32.16 and 33.19 μg g-1 for unifloral and multifloral honeys respectively. Mg, Ca, Fe, Mn, Zn and Cu were present at low-intermediate concentrations. For the other 11 trace elements determined in this study (As, Be, Cd, Co, Cr, Ni, Pb, Se, Tl, U and V), the mean concentrations were very low or below of the LODs. The sites were classified through CA by using elements’ and physicochemical parameters data, then DA on the PCA factors was applied. Dendrograms identified three main groups. PCA explained 52.03% of the total variability with the first two factors. Conclusions In general, there are no evidences of pollution for the analysed honeys. The analytical results obtained for the Argentine honeys indicate the products’ high quality. In fact, most of the toxic elements were below LODs. The chemometric analysis combining CA, DA and PCA showed their aptness as useful tools for honey’s classification. Eventually, this study confirms that the use of honey as biomonitor of environmental contamination is not reliable for sites with low levels of contamination.
2014
Inglese
Conti, M., Finoia, M., Fontana, L., Mele, G., Botrè, F., Iavicoli, I., Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters, <<CHEMISTRY CENTRAL JOURNAL>>, 2014; 8 (1): 44-N/A. [doi:10.1186/1752-153X-8-44] [http://hdl.handle.net/10807/64265]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/64265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 40
social impact