In this paper we investigate a problem proposed by Marco Buratti, Peter Horak and Alex Rosa (denoted by BHR-problem) concerning Hamiltonian paths in the complete graph with prescribed edge-lengths. In particular we solve BHR({1^a,2^b,t^c}) for any even integer t≥4, provided that a+b≥t−1. Furthermore, for t=4,6,8 we present a complete solution of BHR({1^a,2^b,t^c}) for any positive integer a,b,c.

Pasotti, A., Pellegrini, M. A., On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs, <<ELECTRONIC JOURNAL OF COMBINATORICS>>, 2014; (2): N/A-N/A [http://hdl.handle.net/10807/58213]

On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs

Pellegrini, Marco Antonio
2014

Abstract

In this paper we investigate a problem proposed by Marco Buratti, Peter Horak and Alex Rosa (denoted by BHR-problem) concerning Hamiltonian paths in the complete graph with prescribed edge-lengths. In particular we solve BHR({1^a,2^b,t^c}) for any even integer t≥4, provided that a+b≥t−1. Furthermore, for t=4,6,8 we present a complete solution of BHR({1^a,2^b,t^c}) for any positive integer a,b,c.
2014
Inglese
Pasotti, A., Pellegrini, M. A., On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs, <<ELECTRONIC JOURNAL OF COMBINATORICS>>, 2014; (2): N/A-N/A [http://hdl.handle.net/10807/58213]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/58213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact