Engaging in prosocial behavior was explored in the present research, by investigating the role of dorsolateral prefrontal cortex (DLPFC) in modulation of intention to support other people and of emotional attuning as it was expressed by facial feedback (electromiography, EMG). High-frequency rTMS was applied on DLPFC to 25 subjects when they were required to choose to directly intervene or not to support other people in emotionally valenced social situations (cooperative, noncooperative, conflictual, neutral contexts). Two control conditions were included in the experimental design to control the simple stimulation effect (sham condition with absence of TMS stimulation) and the location effect (control site condition with Pz stimulation). In comparison with sham and control condition, rTMS stimulation induced increased prosocial behavior in all the emotional situations. Moreover, as a function of valence, zygomatic (for positive situations) and corrugators (for negative situations) muscle activity was increased, with significant effect by DLPFC stimulation which induced a “facilitation effect”. In addition, negative situations showed a higher rTMS impact for both behavioral and EMG responsiveness. Finally, prosocial behavior was found to be predicted (regression analysis) by EMG variations, as a function of the negative versus positive valence. The prefrontal circuit was suggested to support emotional responsiveness and facial feedback in order to facilitate the prosocial behavior
Balconi, M., Canavesio, Y., High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people, <<SOCIAL NEUROSCIENCE>>, 2014; 9 (1): 82-93. [doi:10.1080/17470919.2013.861361] [http://hdl.handle.net/10807/55677]
High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people
Balconi, Michela;Canavesio, Ylenia
2014
Abstract
Engaging in prosocial behavior was explored in the present research, by investigating the role of dorsolateral prefrontal cortex (DLPFC) in modulation of intention to support other people and of emotional attuning as it was expressed by facial feedback (electromiography, EMG). High-frequency rTMS was applied on DLPFC to 25 subjects when they were required to choose to directly intervene or not to support other people in emotionally valenced social situations (cooperative, noncooperative, conflictual, neutral contexts). Two control conditions were included in the experimental design to control the simple stimulation effect (sham condition with absence of TMS stimulation) and the location effect (control site condition with Pz stimulation). In comparison with sham and control condition, rTMS stimulation induced increased prosocial behavior in all the emotional situations. Moreover, as a function of valence, zygomatic (for positive situations) and corrugators (for negative situations) muscle activity was increased, with significant effect by DLPFC stimulation which induced a “facilitation effect”. In addition, negative situations showed a higher rTMS impact for both behavioral and EMG responsiveness. Finally, prosocial behavior was found to be predicted (regression analysis) by EMG variations, as a function of the negative versus positive valence. The prefrontal circuit was suggested to support emotional responsiveness and facial feedback in order to facilitate the prosocial behaviorI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.