In this paper we prove that if G is a finite exceptional simple group of Lie type, then G admits a 2-covering if, and only if, it is one of the following groups: G_2(2^a), F_4(3^a), G_2(2)', 3G_2(3)', 2F_4(2)'. Furthermore, if G is a finite sporadic simple group, then G admits a 2-covering if, and only if, G = M_11.

Pellegrini, M. A., 2-Coverings for exceptional and sporadic simple groups, <<ARCHIV DER MATHEMATIK>>, 2013; 101 (3): 201-206. [doi:10.1007/s00013-013-0562-8] [http://hdl.handle.net/10807/55564]

2-Coverings for exceptional and sporadic simple groups

Pellegrini, Marco Antonio
2013

Abstract

In this paper we prove that if G is a finite exceptional simple group of Lie type, then G admits a 2-covering if, and only if, it is one of the following groups: G_2(2^a), F_4(3^a), G_2(2)', 3G_2(3)', 2F_4(2)'. Furthermore, if G is a finite sporadic simple group, then G admits a 2-covering if, and only if, G = M_11.
2013
Inglese
Pellegrini, M. A., 2-Coverings for exceptional and sporadic simple groups, <<ARCHIV DER MATHEMATIK>>, 2013; 101 (3): 201-206. [doi:10.1007/s00013-013-0562-8] [http://hdl.handle.net/10807/55564]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/55564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact