Let S_2n be the symmetric group of degree 2n. We give a strong indication to prove the existence of a 1-factorization of the complete graph on (2n)! vertices admitting S_2n as an automorphism group acting sharply transitively on the vertices. In particular we solve the problem when the symmetric group acts on 2p elements, for any prime p. This provides the first class of G-regular 1-factorizations of the complete graph where G is a non-soluble group.

Pasotti, A., Pellegrini, M. A., Symmetric 1-factorizations of the complete graph, <<EUROPEAN JOURNAL OF COMBINATORICS>>, 2010; 31 (5): 1410-1418. [doi:10.1016/j.ejc.2009.12.003] [http://hdl.handle.net/10807/55555]

Symmetric 1-factorizations of the complete graph

Pellegrini, Marco Antonio
2010

Abstract

Let S_2n be the symmetric group of degree 2n. We give a strong indication to prove the existence of a 1-factorization of the complete graph on (2n)! vertices admitting S_2n as an automorphism group acting sharply transitively on the vertices. In particular we solve the problem when the symmetric group acts on 2p elements, for any prime p. This provides the first class of G-regular 1-factorizations of the complete graph where G is a non-soluble group.
2010
Inglese
Pasotti, A., Pellegrini, M. A., Symmetric 1-factorizations of the complete graph, <<EUROPEAN JOURNAL OF COMBINATORICS>>, 2010; 31 (5): 1410-1418. [doi:10.1016/j.ejc.2009.12.003] [http://hdl.handle.net/10807/55555]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/55555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact