The main objective of this experiment was to monitor the rumination pattern during the summer season in lactating dairy cows and to investigate its relationships with metabolic conditions and physiological markers of heat stress. The study was carried out in an experimental freestall barn located near Piacenza, Italy (45°01′N, 9°40′E; 68 m above sea level), and involved 21 Italian Friesian cows (11 primiparous and 10 multiparous) during the summer season. Rumination time (RT) was recorded by using an automatic system and data were calculated and summarized in 2-h intervals. Microclimatic conditions (temperature and relative humidity) inside the barn were recorded during the trial, and the temperature-humidity index (THI) was calculated. Breathing rates and rectal temperatures were recorded following stable meteorological periods characterized by lower and higher temperatures. At the same times, blood samples were collected to assess biochemical variables related to energy, protein, and mineral metabolism, as well as markers of inflammatory conditions and enzyme activity. Daily milk yield, body weight, nutritional condition, and health status were also recorded. The average RT was 501 min/d, with no significant differences between primiparous and multiparous cows. According to the microclimatic conditions and physiological markers of heat stress, the cows suffered mild to moderate heat stress during the summer. A negative relationship between daily maximum THI and RT was observed (r = -0.32), with a reduction of 2.2 min of RT for every daily maximum THI unit over the threshold of daily maximum THI of 76. Most of the rumination occurred during the night (on average the nighttime RT was 63.2% of daytime and nighttime RT); moreover, the proportion of nighttime RT slightly but significantly increased as THI increased. Rumination time throughout the trial was negatively related to breathing rate and positively related to milk yield. Daily maximum THI was negatively correlated with plasma glucose (r = -0.52) and positively correlated with plasma β-hydroxybutyric acid (r = 0.26). Values of plasma β-hydroxybutyric acid were positively related to RT through the trial. Our results indicate that hot conditions negatively affect RT and modify its daily pattern. The relationship between RT and the physiological markers used in our trial support the use of RT as a marker of heat stress. © 2013 American Dairy Science Association.
Soriani, N., Panella, G., Calamari, L., Rumination time during the summer season and its relationships with metabolic conditions and milk production, <<JOURNAL OF DAIRY SCIENCE>>, 2013; 96 (8): 5082-5094. [doi:10.3168/jds.2013-6620] [http://hdl.handle.net/10807/46919]
Rumination time during the summer season and its relationships with metabolic conditions and milk production
Calamari, Luigi
2013
Abstract
The main objective of this experiment was to monitor the rumination pattern during the summer season in lactating dairy cows and to investigate its relationships with metabolic conditions and physiological markers of heat stress. The study was carried out in an experimental freestall barn located near Piacenza, Italy (45°01′N, 9°40′E; 68 m above sea level), and involved 21 Italian Friesian cows (11 primiparous and 10 multiparous) during the summer season. Rumination time (RT) was recorded by using an automatic system and data were calculated and summarized in 2-h intervals. Microclimatic conditions (temperature and relative humidity) inside the barn were recorded during the trial, and the temperature-humidity index (THI) was calculated. Breathing rates and rectal temperatures were recorded following stable meteorological periods characterized by lower and higher temperatures. At the same times, blood samples were collected to assess biochemical variables related to energy, protein, and mineral metabolism, as well as markers of inflammatory conditions and enzyme activity. Daily milk yield, body weight, nutritional condition, and health status were also recorded. The average RT was 501 min/d, with no significant differences between primiparous and multiparous cows. According to the microclimatic conditions and physiological markers of heat stress, the cows suffered mild to moderate heat stress during the summer. A negative relationship between daily maximum THI and RT was observed (r = -0.32), with a reduction of 2.2 min of RT for every daily maximum THI unit over the threshold of daily maximum THI of 76. Most of the rumination occurred during the night (on average the nighttime RT was 63.2% of daytime and nighttime RT); moreover, the proportion of nighttime RT slightly but significantly increased as THI increased. Rumination time throughout the trial was negatively related to breathing rate and positively related to milk yield. Daily maximum THI was negatively correlated with plasma glucose (r = -0.52) and positively correlated with plasma β-hydroxybutyric acid (r = 0.26). Values of plasma β-hydroxybutyric acid were positively related to RT through the trial. Our results indicate that hot conditions negatively affect RT and modify its daily pattern. The relationship between RT and the physiological markers used in our trial support the use of RT as a marker of heat stress. © 2013 American Dairy Science Association.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.