We define an infinite class of unitary transformations between configuration and momentum fractional spaces, thus generalizing the Fourier transform to a special class of fractal geometries. Each transform diagonalizes a unique Laplacian operator. We also introduce a new version of fractional spaces, where coordinates and momenta span the whole real line. In one topological dimension, these results are extended to more general measures.

Nardelli, G., Calcagni, G., Momentum transforms and Laplacians in fractional spaces, <<ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS>>, 2012; 2012 (16/4): 1315-1348. [doi:10.4310/ATMP.2012.v16.n4.a5] [http://hdl.handle.net/10807/43789]

Momentum transforms and Laplacians in fractional spaces

Nardelli, Giuseppe;Calcagni, Gianluca
2012

Abstract

We define an infinite class of unitary transformations between configuration and momentum fractional spaces, thus generalizing the Fourier transform to a special class of fractal geometries. Each transform diagonalizes a unique Laplacian operator. We also introduce a new version of fractional spaces, where coordinates and momenta span the whole real line. In one topological dimension, these results are extended to more general measures.
2012
Inglese
Nardelli, G., Calcagni, G., Momentum transforms and Laplacians in fractional spaces, <<ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS>>, 2012; 2012 (16/4): 1315-1348. [doi:10.4310/ATMP.2012.v16.n4.a5] [http://hdl.handle.net/10807/43789]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/43789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 19
social impact